BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 28123069)

  • 1. CD99 is a therapeutic target on disease stem cells in myeloid malignancies.
    Chung SS; Eng WS; Hu W; Khalaj M; Garrett-Bakelman FE; Tavakkoli M; Levine RL; Carroll M; Klimek VM; Melnick AM; Park CY
    Sci Transl Med; 2017 Jan; 9(374):. PubMed ID: 28123069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do preclinical studies suggest that CD99 is a potential therapeutic target in acute myeloid leukemia and the myelodysplastic syndromes?
    Tavakkoli M; Chung SS; Park CY
    Expert Opin Ther Targets; 2018 May; 22(5):381-383. PubMed ID: 29637789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunoreactivity of MIC2 (CD99) and terminal deoxynucleotidyl transferase in bone marrow clot and core specimens of acute myeloid leukemias and myelodysplastic syndromes.
    Kang LC; Dunphy CH
    Arch Pathol Lab Med; 2006 Feb; 130(2):153-7. PubMed ID: 16454553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells.
    Schinke C; Giricz O; Li W; Shastri A; Gordon S; Barreyro L; Bhagat T; Bhattacharyya S; Ramachandra N; Bartenstein M; Pellagatti A; Boultwood J; Wickrema A; Yu Y; Will B; Wei S; Steidl U; Verma A
    Blood; 2015 May; 125(20):3144-52. PubMed ID: 25810490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunoreactivity of MIC2 (CD99) in acute myelogenous leukemia and related diseases.
    Zhang PJ; Barcos M; Stewart CC; Block AW; Sait S; Brooks JJ
    Mod Pathol; 2000 Apr; 13(4):452-8. PubMed ID: 10786814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and targeting of malignant stem cells in patients with advanced myelodysplastic syndromes.
    Stevens BM; Khan N; D'Alessandro A; Nemkov T; Winters A; Jones CL; Zhang W; Pollyea DA; Jordan CT
    Nat Commun; 2018 Sep; 9(1):3694. PubMed ID: 30209285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions-a review.
    Bernasconi P
    Br J Haematol; 2008 Sep; 142(5):695-708. PubMed ID: 18540941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of myelodysplastic syndromes hematopoietic stem and progenitor cells using mass cytometry.
    Bachas C; Duetz C; van Spronsen MF; Verhoeff J; Garcia Vallejo JJ; Jansen JH; Cloos J; Westers TM; van de Loosdrecht AA
    Cytometry B Clin Cytom; 2023 Mar; 104(2):128-140. PubMed ID: 35289472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?
    Pleyer L; Valent P; Greil R
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27355944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-9 promotes proliferation of leukemia cells in adult CD34-positive acute myeloid leukemia with normal karyotype by downregulation of Hes1.
    Tian C; You MJ; Yu Y; Zhu L; Zheng G; Zhang Y
    Tumour Biol; 2016 Jun; 37(6):7461-71. PubMed ID: 26678889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations.
    Harada Y; Harada H
    J Cell Physiol; 2009 Jul; 220(1):16-20. PubMed ID: 19334039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating CD99 Expression in Leukemia Propagating Cells in Childhood T Cell Acute Lymphoblastic Leukemia.
    Cox CV; Diamanti P; Moppett JP; Blair A
    PLoS One; 2016; 11(10):e0165210. PubMed ID: 27764235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoptosis, bcl-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia.
    Kurotaki H; Tsushima Y; Nagai K; Yagihashi S
    Acta Haematol; 2000; 102(3):115-23. PubMed ID: 10692673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of TIM-3 as a Leukemic Stem Cell Surface Molecule in Primary Acute Myeloid Leukemia.
    Kikushige Y; Miyamoto T
    Oncology; 2015; 89 Suppl 1():28-32. PubMed ID: 26551150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-CD99 scFv-ELP nanoworms for the treatment of acute myeloid leukemia.
    Vaikari VP; Park M; Keossayan L; MacKay JA; Alachkar H
    Nanomedicine; 2020 Oct; 29():102236. PubMed ID: 32535112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PUMA promotes apoptosis of hematopoietic progenitors driving leukemic progression in a mouse model of myelodysplasia.
    Guirguis AA; Slape CI; Failla LM; Saw J; Tremblay CS; Powell DR; Rossello F; Wei A; Strasser A; Curtis DJ
    Cell Death Differ; 2016 Jun; 23(6):1049-59. PubMed ID: 26742432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting stem cells in myelodysplastic syndromes and acute myeloid leukemia.
    Woll PS; Yoshizato T; Hellström-Lindberg E; Fioretos T; Ebert BL; Jacobsen SEW
    J Intern Med; 2022 Aug; 292(2):262-277. PubMed ID: 35822488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of myelodysplastic syndromes into acute myeloid leukemias.
    Shi J; Shao ZH; Liu H; Bai J; Cao YR; He GS; Tu MF; Wang XL; Hao YS; Yang TY; Yang CL
    Chin Med J (Engl); 2004 Jul; 117(7):963-7. PubMed ID: 15265365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of type 1 insulin-like growth factor receptor in marrow nucleated cells in malignant hematological disorders: correlation with apoptosis.
    Qi H; Xiao L; Lingyun W; Ying T; Yi-Zhi L; Shao-Xu Y; Quan P
    Ann Hematol; 2006 Feb; 85(2):95-101. PubMed ID: 16328478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells.
    Kikushige Y; Shima T; Takayanagi S; Urata S; Miyamoto T; Iwasaki H; Takenaka K; Teshima T; Tanaka T; Inagaki Y; Akashi K
    Cell Stem Cell; 2010 Dec; 7(6):708-17. PubMed ID: 21112565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.