These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 28123297)
1. A decomposable silica-based antibacterial coating for percutaneous titanium implant. Wang J; Wu G; Liu X; Sun G; Li D; Wei H Int J Nanomedicine; 2017; 12():371-379. PubMed ID: 28123297 [TBL] [Abstract][Full Text] [Related]
2. Carboxymethyl Dextran-Based Nanomicelle Coatings on Microarc Oxidized Titanium Surface for Percutaneous Implants: Drug Release, Antibacterial Properties, and Biocompatibility. Ye W; Zhou M; Zhang L; Yu J; Fan J; Wei H Biomed Res Int; 2022; 2022():9225647. PubMed ID: 35865662 [TBL] [Abstract][Full Text] [Related]
3. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium. Cheng Y; Zhao X; Liu X; Sun W; Ren H; Gao B; Wu J Int J Nanomedicine; 2015; 10():727-37. PubMed ID: 25632231 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Massa MA; Covarrubias C; Bittner M; Fuentevilla IA; Capetillo P; Von Marttens A; Carvajal JC Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():146-53. PubMed ID: 25491813 [TBL] [Abstract][Full Text] [Related]
5. 3D-printed porous titanium rods equipped with vancomycin-loaded hydrogels and polycaprolactone membranes for intelligent antibacterial drug release. Ma Z; Zhao Y; Xu Z; Zhang Y; Han Y; Jiang H; Sun P; Feng W Sci Rep; 2024 Sep; 14(1):21749. PubMed ID: 39294268 [TBL] [Abstract][Full Text] [Related]
7. Long-term antibacterial activity of a composite coating on titanium for dental implant application. Cheng Y; Mei S; Kong X; Liu X; Gao B; Chen B; Wu J J Biomater Appl; 2021 Jan; 35(6):643-654. PubMed ID: 33045872 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and in vitro release behavior of a novel antibacterial coating containing halogenated furanone-loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium. Cheng Y; Wu J; Gao B; Zhao X; Yao J; Mei S; Zhang L; Ren H Int J Nanomedicine; 2012; 7():5641-52. PubMed ID: 23152682 [TBL] [Abstract][Full Text] [Related]
9. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants. Cheng Y; Gao B; Liu X; Zhao X; Sun W; Ren H; Wu J Int J Nanomedicine; 2016; 11():1337-47. PubMed ID: 27099494 [TBL] [Abstract][Full Text] [Related]
10. Functional behavior of chitosan/gelatin/silica-gentamicin coatings by electrophoretic deposition on surgical grade stainless steel. Aydemir T; Liverani L; Pastore JI; Ceré SM; Goldmann WH; Boccaccini AR; Ballarre J Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111062. PubMed ID: 32600688 [TBL] [Abstract][Full Text] [Related]
11. Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity. Zeng X; Xiong S; Zhuo S; Liu C; Miao J; Liu D; Wang H; Zhang Y; Wang C; Liu Y Int J Nanomedicine; 2019; 14():1849-1863. PubMed ID: 30880984 [TBL] [Abstract][Full Text] [Related]
12. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates. Xu G; Shen X; Dai L; Ran Q; Ma P; Cai K Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):386-395. PubMed ID: 27770907 [TBL] [Abstract][Full Text] [Related]
13. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Yuan Z; Liu P; Hao Y; Ding Y; Cai K Colloids Surf B Biointerfaces; 2018 Nov; 171():597-605. PubMed ID: 30099296 [TBL] [Abstract][Full Text] [Related]
14. Smart Titanium Coating Composed of Antibiotic Conjugated Peptides as an Infection-Responsive Antibacterial Agent. Zhang Y; Hu K; Xing X; Zhang J; Zhang MR; Ma X; Shi R; Zhang L Macromol Biosci; 2021 Jan; 21(1):e2000194. PubMed ID: 33052007 [TBL] [Abstract][Full Text] [Related]
15. Antibacterial and cytocompatibility study of modified Ti6Al4V surfaces through thermal annealing. Patil D; Wasson MK; Aravindan S; Vivekanandan P; Rao PV Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1007-1020. PubMed ID: 30889633 [TBL] [Abstract][Full Text] [Related]
16. Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: an in vitro and in vivo study. Kälicke T; Schierholz J; Schlegel U; Frangen TM; Köller M; Printzen G; Seybold D; Klöckner S; Muhr G; Arens S J Orthop Res; 2006 Aug; 24(8):1622-40. PubMed ID: 16779814 [TBL] [Abstract][Full Text] [Related]
17. A superparamagnetic Fe Li K; Liu S; Xue Y; Zhang L; Han Y J Mater Chem B; 2019 Sep; 7(34):5265-5276. PubMed ID: 31384861 [TBL] [Abstract][Full Text] [Related]
18. [Primary study on the antibacterial property of silver-loaded nano-titania coatings]. Feng Y; Cao C; Li BE; Liu XY; Dong YQ Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(29):2077-80. PubMed ID: 19080440 [TBL] [Abstract][Full Text] [Related]
19. Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study. Norambuena GA; Patel R; Karau M; Wyles CC; Jannetto PJ; Bennet KE; Hanssen AD; Sierra RJ Clin Orthop Relat Res; 2017 Mar; 475(3):722-732. PubMed ID: 26847453 [TBL] [Abstract][Full Text] [Related]
20. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria. van Hengel IAJ; Putra NE; Tierolf MWAM; Minneboo M; Fluit AC; Fratila-Apachitei LE; Apachitei I; Zadpoor AA Acta Biomater; 2020 Apr; 107():325-337. PubMed ID: 32145392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]