These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 28123297)
61. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. Lv H; Chen Z; Yang X; Cen L; Zhang X; Gao P J Dent; 2014 Nov; 42(11):1464-72. PubMed ID: 24930872 [TBL] [Abstract][Full Text] [Related]
62. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Kazemzadeh-Narbat M; Lai BF; Ding C; Kizhakkedathu JN; Hancock RE; Wang R Biomaterials; 2013 Aug; 34(24):5969-77. PubMed ID: 23680363 [TBL] [Abstract][Full Text] [Related]
63. The antimicrobial activity and biocompatibility of a controlled gentamicin-releasing single-layer sol-gel coating on hydroxyapatite-coated titanium. Nichol T; Callaghan J; Townsend R; Stockley I; Hatton PV; Le Maitre C; Smith TJ; Akid R Bone Joint J; 2021 Mar; 103-B(3):522-529. PubMed ID: 33641411 [TBL] [Abstract][Full Text] [Related]
64. Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. Hizal F; Zhuk I; Sukhishvili S; Busscher HJ; van der Mei HC; Choi CH ACS Appl Mater Interfaces; 2015 Sep; 7(36):20304-13. PubMed ID: 26305913 [TBL] [Abstract][Full Text] [Related]
65. A polypeptide coating for preventing biofilm on implants by inhibiting antibiotic resistance genes. Liu D; Xi Y; Yu S; Yang K; Zhang F; Yang Y; Wang T; He S; Zhu Y; Fan Z; Du J Biomaterials; 2023 Feb; 293():121957. PubMed ID: 36549042 [TBL] [Abstract][Full Text] [Related]
66. Electrophoretic deposition of magnesium oxide coating on micro-arc oxidized titanium for antibacterial activity and biocompatibility. Fan X; Du J; Li Y; Duan K; Liu G J Orthop Surg Res; 2023 Nov; 18(1):901. PubMed ID: 38012792 [TBL] [Abstract][Full Text] [Related]
67. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Li X; Qi M; Sun X; Weir MD; Tay FR; Oates TW; Dong B; Zhou Y; Wang L; Xu HHK Acta Biomater; 2019 Aug; 94():627-643. PubMed ID: 31212111 [TBL] [Abstract][Full Text] [Related]
68. Antibacterial and anticancer activities of asymmetric lollipop-like mesoporous silica nanoparticles loaded with curcumin and gentamicin sulfate. Cheng Y; Zhang Y; Deng W; Hu J Colloids Surf B Biointerfaces; 2020 Feb; 186():110744. PubMed ID: 31874345 [TBL] [Abstract][Full Text] [Related]
69. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Wu S; Xu J; Zou L; Luo S; Yao R; Zheng B; Liang G; Wu D; Li Y Nat Commun; 2021 Jun; 12(1):3303. PubMed ID: 34083518 [TBL] [Abstract][Full Text] [Related]
70. Biodegradable rifampicin-releasing coating of surgical meshes for the prevention of bacterial infections. Reinbold J; Hierlemann T; Urich L; Uhde AK; Müller I; Weindl T; Vogel U; Schlensak C; Wendel HP; Krajewski S Drug Des Devel Ther; 2017; 11():2753-2762. PubMed ID: 29075100 [TBL] [Abstract][Full Text] [Related]
71. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Kazemzadeh-Narbat M; Kindrachuk J; Duan K; Jenssen H; Hancock RE; Wang R Biomaterials; 2010 Dec; 31(36):9519-26. PubMed ID: 20970848 [TBL] [Abstract][Full Text] [Related]
72. Dopamine-functionalized sulphated hyaluronic acid as a titanium implant coating enhances biofilm prevention and promotes osseointegration. Guarise C; Barbera C; Pavan M; Pluda S; Celestre M; Galesso D Biofouling; 2018 Aug; 34(7):719-730. PubMed ID: 30270674 [TBL] [Abstract][Full Text] [Related]
73. Antibacterial efficacy of a new gentamicin-coating for cementless prostheses compared to gentamicin-loaded bone cement. Neut D; Dijkstra RJ; Thompson JI; van der Mei HC; Busscher HJ J Orthop Res; 2011 Nov; 29(11):1654-61. PubMed ID: 21491478 [TBL] [Abstract][Full Text] [Related]
74. Antibacterial Activity against Pranno N; La Monaca G; Polimeni A; Sarto MS; Uccelletti D; Bruni E; Cristalli MP; Cavallini D; Vozza I Int J Environ Res Public Health; 2020 Feb; 17(5):. PubMed ID: 32121336 [TBL] [Abstract][Full Text] [Related]
76. Construction of selenium-embedded mesoporous silica with improved antibacterial activity. Chen J; Wei Y; Yang X; Ni S; Hong F; Ni S Colloids Surf B Biointerfaces; 2020 Jun; 190():110910. PubMed ID: 32126358 [TBL] [Abstract][Full Text] [Related]
77. Investigation of Ag/a-C:H Nanocomposite Coatings on Titanium for Orthopedic Applications. Thukkaram M; Vaidulych M; Kylián O; Hanuš J; Rigole P; Aliakbarshirazi S; Asadian M; Nikiforov A; Van Tongel A; Biederman H; Coenye T; Du Laing G; Morent R; De Wilde L; Verbeken K; De Geyter N ACS Appl Mater Interfaces; 2020 May; 12(21):23655-23666. PubMed ID: 32374146 [TBL] [Abstract][Full Text] [Related]
78. A functional coating to enhance antibacterial and bioactivity properties of titanium implants and its performance Doymus B; Kerem G; Yazgan Karatas A; Kok FN; Önder S J Biomater Appl; 2021 Jan; 35(6):655-669. PubMed ID: 33283583 [TBL] [Abstract][Full Text] [Related]
79. Iodine-doped TiO Yang X; Chen NF; Huang XL; Lin S; Chen QQ; Wang WM; Chen JS J Orthop Surg Res; 2023 Nov; 18(1):854. PubMed ID: 37950251 [TBL] [Abstract][Full Text] [Related]
80. Antibacterial and biological properties of biofunctionalized nanocomposites on titanium for implant application. Li P; Tong Z; Huo L; Yang F; Su W J Biomater Appl; 2016 Aug; 31(2):205-14. PubMed ID: 27114441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]