BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28123598)

  • 1. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells.
    Huo W; Zhao G; Yin J; Ouyang X; Wang Y; Yang C; Wang B; Dong P; Wang Z; Watari H; Chaum E; Pfeffer LM; Yue J
    J Cancer; 2017; 8(1):57-64. PubMed ID: 28123598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells.
    Zhao G; Wang Q; Gu Q; Qiang W; Wei JJ; Dong P; Watari H; Li W; Yue J
    Oncotarget; 2017 Nov; 8(55):94666-94680. PubMed ID: 29212257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knockout of MTF1 Inhibits the Epithelial to Mesenchymal Transition in Ovarian Cancer Cells.
    Ji L; Zhao G; Zhang P; Huo W; Dong P; Watari H; Jia L; Pfeffer LM; Yue J; Zheng J
    J Cancer; 2018; 9(24):4578-4585. PubMed ID: 30588241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 5. CFTR inactivation by lentiviral vector-mediated RNA interference and CRISPR-Cas9 genome editing in human airway epithelial cells.
    Bellec J; Bacchetta M; Losa D; Anegon I; Chanson M; Nguyen TH
    Curr Gene Ther; 2015; 15(5):447-59. PubMed ID: 26264708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EIF5A2 controls ovarian tumor growth and metastasis by promoting epithelial to mesenchymal transition via the TGFβ pathway.
    Zhao G; Zhang W; Dong P; Watari H; Guo Y; Pfeffer LM; Tigyi G; Yue J
    Cell Biosci; 2021 Apr; 11(1):70. PubMed ID: 33827661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR-203 Functions as a Tumor Suppressor by Inhibiting Epithelial to Mesenchymal Transition in Ovarian Cancer.
    Zhao G; Guo Y; Chen Z; Wang Y; Yang C; Dudas A; Du Z; Liu W; Zou Y; Szabo E; Lee SC; Sims M; Gu W; Tillmanns T; Pfeffer LM; Tigyi G; Yue J
    J Cancer Sci Ther; 2015; 7(2):34-43. PubMed ID: 26819680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.
    Yuen KS; Chan CP; Wong NM; Ho CH; Ho TH; Lei T; Deng W; Tsao SW; Chen H; Kok KH; Jin DY
    J Gen Virol; 2015 Mar; 96(Pt 3):626-636. PubMed ID: 25502645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9 mediated CD133 knockout inhibits colon cancer invasion through reduced epithelial-mesenchymal transition.
    Li W; Cho MY; Lee S; Jang M; Park J; Park R
    PLoS One; 2019; 14(8):e0220860. PubMed ID: 31393941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway.
    Wang B; Li X; Zhao G; Yan H; Dong P; Watari H; Sims M; Li W; Pfeffer LM; Guo Y; Yue J
    J Exp Clin Cancer Res; 2018 Sep; 37(1):235. PubMed ID: 30241553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Mitochondrial Genome Editing by CRISPR/Cas9.
    Jo A; Ham S; Lee GH; Lee YI; Kim S; Lee YS; Shin JH; Lee Y
    Biomed Res Int; 2015; 2015():305716. PubMed ID: 26448933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Multiplex Genome Editing Induces Precise, and Self-Ligated Type Mutations in Tomato Plants.
    Hashimoto R; Ueta R; Abe C; Osakabe Y; Osakabe K
    Front Plant Sci; 2018; 9():916. PubMed ID: 30018630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrase-Deficient Lentiviral Vector as an All-in-One Platform for Highly Efficient CRISPR/Cas9-Mediated Gene Editing.
    Ortinski PI; O'Donovan B; Dong X; Kantor B
    Mol Ther Methods Clin Dev; 2017 Jun; 5():153-164. PubMed ID: 28497073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
    Wang HX; Li M; Lee CM; Chakraborty S; Kim HW; Bao G; Leong KW
    Chem Rev; 2017 Aug; 117(15):9874-9906. PubMed ID: 28640612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 20. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.