These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28123598)

  • 1. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells.
    Huo W; Zhao G; Yin J; Ouyang X; Wang Y; Yang C; Wang B; Dong P; Wang Z; Watari H; Chaum E; Pfeffer LM; Yue J
    J Cancer; 2017; 8(1):57-64. PubMed ID: 28123598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells.
    Zhao G; Wang Q; Gu Q; Qiang W; Wei JJ; Dong P; Watari H; Li W; Yue J
    Oncotarget; 2017 Nov; 8(55):94666-94680. PubMed ID: 29212257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knockout of MTF1 Inhibits the Epithelial to Mesenchymal Transition in Ovarian Cancer Cells.
    Ji L; Zhao G; Zhang P; Huo W; Dong P; Watari H; Jia L; Pfeffer LM; Yue J; Zheng J
    J Cancer; 2018; 9(24):4578-4585. PubMed ID: 30588241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 5. CFTR inactivation by lentiviral vector-mediated RNA interference and CRISPR-Cas9 genome editing in human airway epithelial cells.
    Bellec J; Bacchetta M; Losa D; Anegon I; Chanson M; Nguyen TH
    Curr Gene Ther; 2015; 15(5):447-59. PubMed ID: 26264708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EIF5A2 controls ovarian tumor growth and metastasis by promoting epithelial to mesenchymal transition via the TGFβ pathway.
    Zhao G; Zhang W; Dong P; Watari H; Guo Y; Pfeffer LM; Tigyi G; Yue J
    Cell Biosci; 2021 Apr; 11(1):70. PubMed ID: 33827661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR-203 Functions as a Tumor Suppressor by Inhibiting Epithelial to Mesenchymal Transition in Ovarian Cancer.
    Zhao G; Guo Y; Chen Z; Wang Y; Yang C; Dudas A; Du Z; Liu W; Zou Y; Szabo E; Lee SC; Sims M; Gu W; Tillmanns T; Pfeffer LM; Tigyi G; Yue J
    J Cancer Sci Ther; 2015; 7(2):34-43. PubMed ID: 26819680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.
    Yuen KS; Chan CP; Wong NM; Ho CH; Ho TH; Lei T; Deng W; Tsao SW; Chen H; Kok KH; Jin DY
    J Gen Virol; 2015 Mar; 96(Pt 3):626-636. PubMed ID: 25502645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9 mediated CD133 knockout inhibits colon cancer invasion through reduced epithelial-mesenchymal transition.
    Li W; Cho MY; Lee S; Jang M; Park J; Park R
    PLoS One; 2019; 14(8):e0220860. PubMed ID: 31393941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway.
    Wang B; Li X; Zhao G; Yan H; Dong P; Watari H; Sims M; Li W; Pfeffer LM; Guo Y; Yue J
    J Exp Clin Cancer Res; 2018 Sep; 37(1):235. PubMed ID: 30241553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Mitochondrial Genome Editing by CRISPR/Cas9.
    Jo A; Ham S; Lee GH; Lee YI; Kim S; Lee YS; Shin JH; Lee Y
    Biomed Res Int; 2015; 2015():305716. PubMed ID: 26448933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Multiplex Genome Editing Induces Precise, and Self-Ligated Type Mutations in Tomato Plants.
    Hashimoto R; Ueta R; Abe C; Osakabe Y; Osakabe K
    Front Plant Sci; 2018; 9():916. PubMed ID: 30018630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrase-Deficient Lentiviral Vector as an All-in-One Platform for Highly Efficient CRISPR/Cas9-Mediated Gene Editing.
    Ortinski PI; O'Donovan B; Dong X; Kantor B
    Mol Ther Methods Clin Dev; 2017 Jun; 5():153-164. PubMed ID: 28497073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
    Wang HX; Li M; Lee CM; Chakraborty S; Kim HW; Bao G; Leong KW
    Chem Rev; 2017 Aug; 117(15):9874-9906. PubMed ID: 28640612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 20. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.