These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28123908)
21. Determination of Pt in biological samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) with electrothermal vaporization (ETV). Alimonti A; Petrucci F; Dominici C; Caroli S J Trace Elem Electrolytes Health Dis; 1987 Dec; 1(2):79-83. PubMed ID: 2856573 [TBL] [Abstract][Full Text] [Related]
22. [Selenium determination in plasma/serum by inductively coupled plasma mass spectrometry (ICP-MS): comparison with graphite furnace atomic absorption spectrometry (GF-AAS)]. Janasik B; Trzcinka-Ochocka M; Brodzka R Med Pr; 2011; 62(5):489-98. PubMed ID: 22312963 [TBL] [Abstract][Full Text] [Related]
23. Determination of lead in vinegar by ICP-MS and GFAAS: evaluation of different sample preparation procedures. Ndung'u K; Hibdon S; Flegal AR Talanta; 2004 Sep; 64(1):258-63. PubMed ID: 18969597 [TBL] [Abstract][Full Text] [Related]
24. Sensitive method for nontransferrin-bound iron quantification by graphite furnace atomic absorption spectrometry. Jakeman A; Thompson T; McHattie J; Lehotay DC Clin Biochem; 2001 Feb; 34(1):43-7. PubMed ID: 11239514 [TBL] [Abstract][Full Text] [Related]
25. Development and Collaborative Study of a Diluted Acid Mild Extraction Method for Determination of Cadmium in Grain by Graphite Furnace Atomic Absorption Spectrometry. Zhou M; Wu Y; Zhang J; Zhang Y; Chen X; Ye J; Wang S Anal Sci; 2019 Mar; 35(3):283-287. PubMed ID: 30393237 [TBL] [Abstract][Full Text] [Related]
26. Analytical Performance and Validation of a Reliable Method Based on Graphite Furnace Atomic Absorption Spectrometry for the Determination of Gold Nanoparticles in Biological Tissues. Cadar O; Mocan T; Roman C; Senila M Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947719 [TBL] [Abstract][Full Text] [Related]
27. Determination of lead in blood by graphite furnace atomic absorption spectrometry--a critique. Subramanian KS Sci Total Environ; 1989 Dec; 89(3):237-50. PubMed ID: 2694372 [TBL] [Abstract][Full Text] [Related]
28. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review. de la Calle I; Pena-Pereira F; Lavilla I; Bendicho C Anal Chim Acta; 2016 Sep; 936():12-39. PubMed ID: 27566338 [TBL] [Abstract][Full Text] [Related]
29. Determination of Lead in Water Samples by GFAAS after Collection on Montmorillonite with Slurry Introduction. Caliskan E; Tinas H; Ozbek N; Akman S Anal Sci; 2017; 33(3):387-390. PubMed ID: 28302983 [TBL] [Abstract][Full Text] [Related]
30. Determination of platinum and palladium in environmental samples by graphite furnace atomic absorption spectrometry after separation on dithizone sorbent. Chwastowska J; Skwara W; Sterlińska E; Pszonicki L Talanta; 2004 Sep; 64(1):224-9. PubMed ID: 18969592 [TBL] [Abstract][Full Text] [Related]
32. Direct solid sample analysis with graphite furnace atomic absorption spectrometry—a fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood. Zmozinski AV; Llorente-Mirandes T; Damin ICF; López-Sánchez JF; Vale MGR; Welz B; Silva MM Talanta; 2015 Mar; 134():224-231. PubMed ID: 25618661 [TBL] [Abstract][Full Text] [Related]
33. Determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn by Inductively Coupled Plasma Mass Spectroscopy or Flame Atomic Absorption Spectrometry after On-line Preconcentration and Solvent Extraction by Flow Injection System. Bortoli A; Gerotto M; Marchiori M; Mariconti F; Palonta M; Troncon A Microchem J; 1996 Nov; 54(4):402-11. PubMed ID: 8979955 [TBL] [Abstract][Full Text] [Related]
34. Determination of total selenium in pharmaceutical and herbal supplements by hydride generation and graphite furnace atomic absorption spectrometry. Kazi TG; Kolachi NF; Afridi HI; Brahman KD; Shah F J AOAC Int; 2014; 97(6):1696-700. PubMed ID: 25632445 [TBL] [Abstract][Full Text] [Related]
35. A method for low volume and low Se concentration samples and application to paired cerebrospinal fluid and serum samples. Michalke B; Grill P; Berthele A J Trace Elem Med Biol; 2009; 23(4):243-50. PubMed ID: 19747619 [TBL] [Abstract][Full Text] [Related]
36. Determination of cadmium in biodiesel using microemulsion and electrothermal atomization atomic absorption spectrometry. Lima AS; Silva DG; Teixeira LS Environ Monit Assess; 2015 Jan; 187(1):4122. PubMed ID: 25381584 [TBL] [Abstract][Full Text] [Related]
37. Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for Quantitative Analysis of Platinum in Plasma, Urine, and Tissues. Zhang T; Cai S; Forrest WC; Mohr E; Yang Q; Forrest ML Appl Spectrosc; 2016 Sep; 70(9):1529-36. PubMed ID: 27527103 [TBL] [Abstract][Full Text] [Related]
38. [Graphite furnace atomic absorption spectrometry for determination of thallium in blood]. Zhang QL; Gao G Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2016 Apr; 34(4):302-4. PubMed ID: 27514271 [TBL] [Abstract][Full Text] [Related]
39. [Preconcentration of Trace Cu(II) in Water Samples with Nano-Sized ZnO and Determination by GFAAS]. Huang SS; Zhang X; Qian SH Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2420-3. PubMed ID: 26669141 [TBL] [Abstract][Full Text] [Related]
40. Superiority of nitric acid for deproteinization in the determination of trace lithium in serum by graphite furnace atomic absorption spectrometry. Zhao J; Gao P; Wu S; Zhu D J Pharm Biomed Anal; 2009 Dec; 50(5):1075-9. PubMed ID: 19616397 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]