These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 28124282)
1. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease. Smith ML; McGuinness J; O'Reilly MK; Nolke L; Murray JG; Jones JFX Ir J Med Sci; 2017 Aug; 186(3):753-756. PubMed ID: 28124282 [TBL] [Abstract][Full Text] [Related]
2. Patient-specific three-dimensional printed heart models benefit preoperative planning for complex congenital heart disease. Xu JJ; Luo YJ; Wang JH; Xu WZ; Shi Z; Fu JZ; Shu Q World J Pediatr; 2019 Jun; 15(3):246-254. PubMed ID: 30796731 [TBL] [Abstract][Full Text] [Related]
3. Clinical Application and Multidisciplinary Assessment of Three Dimensional Printing in Double Outlet Right Ventricle With Remote Ventricular Septal Defect. Garekar S; Bharati A; Chokhandre M; Mali S; Trivedi B; Changela VP; Solanki N; Gaikwad S; Agarwal V World J Pediatr Congenit Heart Surg; 2016 May; 7(3):344-50. PubMed ID: 27142402 [TBL] [Abstract][Full Text] [Related]
4. Single-center experience with routine clinical use of 3D technologies in surgical planning for pediatric patients with complex congenital heart disease. Yıldız O; Köse B; Tanıdır IC; Pekkan K; Güzeltaş A; Haydin S Diagn Interv Radiol; 2021 Jul; 27(4):488-496. PubMed ID: 34313233 [TBL] [Abstract][Full Text] [Related]
5. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects. Olejník P; Nosal M; Havran T; Furdova A; Cizmar M; Slabej M; Thurzo A; Vitovic P; Klvac M; Acel T; Masura J Kardiol Pol; 2017; 75(5):495-501. PubMed ID: 28281732 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional printing enhances preparation for repair of double outlet right ventricular surgery. Zhao L; Zhou S; Fan T; Li B; Liang W; Dong H J Card Surg; 2018 Jan; 33(1):24-27. PubMed ID: 29409167 [TBL] [Abstract][Full Text] [Related]
7. Using 3D Physical Modeling to Plan Surgical Corrections of Complex Congenital Heart Defects. Vodiskar J; Kütting M; Steinseifer U; Vazquez-Jimenez JF; Sonntag SJ Thorac Cardiovasc Surg; 2017 Jan; 65(1):31-35. PubMed ID: 27177266 [No Abstract] [Full Text] [Related]
8. Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions? Bhatla P; Tretter JT; Ludomirsky A; Argilla M; Latson LA; Chakravarti S; Barker PC; Yoo SJ; McElhinney DB; Wake N; Mosca RS Pediatr Cardiol; 2017 Jan; 38(1):103-114. PubMed ID: 27837304 [TBL] [Abstract][Full Text] [Related]
9. Morphological analysis and preoperative simulation of a double-chambered right ventricle using 3-dimensional printing technology. Shirakawa T; Koyama Y; Mizoguchi H; Yoshitatsu M Interact Cardiovasc Thorac Surg; 2016 May; 22(5):688-90. PubMed ID: 26860990 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional printing and virtual surgery for congenital heart procedural planning. Moore RA; Riggs KW; Kourtidou S; Schneider K; Szugye N; Troja W; D'Souza G; Rattan M; Bryant R; Taylor MD; Morales DLS Birth Defects Res; 2018 Aug; 110(13):1082-1090. PubMed ID: 30079634 [TBL] [Abstract][Full Text] [Related]
11. [Three-dimensional virtual and printed models improve preoperative planning and promote patient-safety in complex congenital and pediatric cardiac surgery]. Király L Orv Hetil; 2019 May; 160(19):747-755. PubMed ID: 31055963 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use. Perens G; Chyu J; McHenry K; Yoshida T; Finn JP World J Pediatr Congenit Heart Surg; 2020 Nov; 11(6):797-801. PubMed ID: 33164685 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery-A Multidisciplinary Team-Learning Experience. Kiraly L; Shah NC; Abdullah O; Al-Ketan O; Rowshan R Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827702 [TBL] [Abstract][Full Text] [Related]
14. 3D Printed Cardiac Models as an Adjunct to Traditional Teaching of Anatomy in Congenital Heart Disease-A Randomised Controlled Study. Tarca A; Woo N; Bain S; Crouchley D; McNulty E; Yim D Heart Lung Circ; 2023 Dec; 32(12):1443-1450. PubMed ID: 38007317 [TBL] [Abstract][Full Text] [Related]
15. 3D printing and modeling of congenital heart defects: A technical review. Townsend K; Pietila T Birth Defects Res; 2018 Aug; 110(13):1091-1097. PubMed ID: 30063112 [TBL] [Abstract][Full Text] [Related]
17. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments. Lau IWW; Liu D; Xu L; Fan Z; Sun Z PLoS One; 2018; 13(3):e0194333. PubMed ID: 29561912 [TBL] [Abstract][Full Text] [Related]
18. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease. Gosnell J; Pietila T; Samuel BP; Kurup HK; Haw MP; Vettukattil JJ J Digit Imaging; 2016 Dec; 29(6):665-669. PubMed ID: 27072399 [TBL] [Abstract][Full Text] [Related]
19. Value of 3D printing for the comprehension of surgical anatomy. Marconi S; Pugliese L; Botti M; Peri A; Cavazzi E; Latteri S; Auricchio F; Pietrabissa A Surg Endosc; 2017 Oct; 31(10):4102-4110. PubMed ID: 28281114 [TBL] [Abstract][Full Text] [Related]
20. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease. Brun H; Bugge RAB; Suther LKR; Birkeland S; Kumar R; Pelanis E; Elle OJ Eur Heart J Cardiovasc Imaging; 2019 Aug; 20(8):883-888. PubMed ID: 30534951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]