These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28124689)

  • 21. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.
    Yuan Z; Yin L
    Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control.
    Zhao K; Pan Z; Mora-Seró I; Cánovas E; Wang H; Song Y; Gong X; Wang J; Bonn M; Bisquert J; Zhong X
    J Am Chem Soc; 2015 Apr; 137(16):5602-9. PubMed ID: 25860792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells.
    Zhu G; Su F; Lv T; Pan L; Sun Z
    Nanoscale Res Lett; 2010 Jul; 5(11):1749-1754. PubMed ID: 21124643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt(II/III) redox electrolyte.
    Fan J; Fàbrega C; Zamani RR; Hao Y; Parra A; Andreu T; Arbiol J; Boschloo G; Hagfeldt A; Morante JR; Cabot A
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9872-7. PubMed ID: 24025444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PbS Quantum Dots Sensitized TiO2 Solar Cells Prepared by Successive Ionic Layer Absorption and Reaction with Different Adsorption Layers.
    Yi J; Duan Y; Liu C; Gao S; Han X; An L
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3904-8. PubMed ID: 27451735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells.
    Shen C; Fichou D; Wang Q
    Chem Asian J; 2016 Apr; 11(8):1183-93. PubMed ID: 26879244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells.
    Ren Z; Yu J; Pan Z; Wang J; Zhong X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays.
    Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D
    Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A stoichiometric CdS interlayer for the photovoltaic performance enhancement of quantum-dot sensitized solar cells.
    Chen S; Wang Y; Lu S; Liu Y; Zhang X
    Phys Chem Chem Phys; 2019 Feb; 21(7):3970-3975. PubMed ID: 30706911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved light-harvesting and suppressed charge recombination by introduction of a nanograss-like SnO
    Sambasivam S; V V Muralee Gopi C; Kim HJ; Obaidat IM
    RSC Adv; 2019 Nov; 9(65):38047-38054. PubMed ID: 35541786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solar cells with PbS quantum dot sensitized TiO
    Kokal RK; Deepa M; Kalluri A; Singh S; Macwan I; Patra PK; Gilarde J
    Phys Chem Chem Phys; 2017 Oct; 19(38):26330-26345. PubMed ID: 28936513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells.
    Chandiran AK; Abdi-Jalebi M; Nazeeruddin MK; Grätzel M
    ACS Nano; 2014 Mar; 8(3):2261-8. PubMed ID: 24552648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime.
    Gopi CV; Venkata-Haritha M; Seo H; Singh S; Kim SK; Shiratani M; Kim HJ
    Dalton Trans; 2016 May; 45(20):8447-57. PubMed ID: 27111597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering the synthesized colloidal CuInS
    Liang Z; Chen Y; Zhang R; Zhang K; Ba K; Lin Y; Wang D; Xie T
    Dalton Trans; 2022 Nov; 51(45):17292-17300. PubMed ID: 36317601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%.
    Du J; Du Z; Hu JS; Pan Z; Shen Q; Sun J; Long D; Dong H; Sun L; Zhong X; Wan LJ
    J Am Chem Soc; 2016 Mar; 138(12):4201-9. PubMed ID: 26962680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/in situ growth approach.
    Chang CC; Chen JK; Chen CP; Yang CH; Chang JY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11296-306. PubMed ID: 24095097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.