These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28124762)

  • 1. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.
    Zainal MA; Ahmad A; Mohamed Ali MS
    Biomed Microdevices; 2017 Mar; 19(1):8. PubMed ID: 28124762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wirelessly activated device with an integrated ionic polymer metal composite (IPMC) cantilever valve for targeted drug delivery.
    Cheong HR; Nguyen NT; Khaw MK; Teoh BY; Chee PS
    Lab Chip; 2018 Oct; 18(20):3207-3215. PubMed ID: 30229248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves.
    Rahimi S; Sarraf EH; Wong GK; Takahata K
    Biomed Microdevices; 2011 Apr; 13(2):267-77. PubMed ID: 21161600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless displacement sensing of micromachined spiral-coil actuator using resonant frequency tracking.
    Ali MS; AbuZaiter A; Schlosser C; Bycraft B; Takahata K
    Sensors (Basel); 2014 Jul; 14(7):12399-409. PubMed ID: 25014100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.
    Fong J; Xiao Z; Takahata K
    Lab Chip; 2015 Feb; 15(4):1050-8. PubMed ID: 25473933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A MEMS electrochemical bellows actuator for fluid metering applications.
    Sheybani R; Gensler H; Meng E
    Biomed Microdevices; 2013 Feb; 15(1):37-48. PubMed ID: 22833156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-fabricated perforated polymer devices for long-term drug delivery.
    Wu ZJ; Luo Z; Rastogi A; Stavchansky S; Bowman PD; Ho PS
    Biomed Microdevices; 2011 Jun; 13(3):485-91. PubMed ID: 21347826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator.
    Fujita H; Van Dau T; Shimizu K; Hatsuda R; Sugiyama S; Nagamori E
    Biomed Microdevices; 2011 Feb; 13(1):123-9. PubMed ID: 20957437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a remote-control drug delivery implantable chip for cancer local on demand therapy using ionic polymer metal composite actuator.
    Saneei Mousavi MS; Karami AH; Ghasemnejad M; Kolahdouz M; Manteghi F; Ataei F
    J Mech Behav Biomed Mater; 2018 Oct; 86():250-256. PubMed ID: 29986300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wirelessly addressable heater array for centrifugal microfluidics and Escherichia coli sterilization.
    Chen X; Song L; Assadsangabi B; Fang J; Mohamed Ali MS; Takahata K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5505-8. PubMed ID: 24110983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors.
    Sheybani R; Cobo A; Meng E
    Biomed Microdevices; 2015 Aug; 17(4):74. PubMed ID: 26149696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.
    Li H; Zhang J; Zhang N; Kershaw J; Wang L
    J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless Micro Soft Actuator without Payloads Using 3D Helical Coils.
    Lee S; Jung W; Ko K; Hwang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless, battery-free and wearable device for electrically controlled drug delivery: sodium salicylate released from bilayer polypyrrole by near-field communication on smartphone.
    Liu J; Liu Z; Li X; Zhu L; Xu G; Chen Z; Cheng C; Lu Y; Liu Q
    Biomed Microdevices; 2020 Aug; 22(3):53. PubMed ID: 32780312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A passive MEMS drug delivery pump for treatment of ocular diseases.
    Lo R; Li PY; Saati S; Agrawal RN; Humayun MS; Meng E
    Biomed Microdevices; 2009 Oct; 11(5):959-70. PubMed ID: 19396548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel templates for the fabrication of homogeneous polymer microparticles.
    Acharya G; McDermott M; Shin SJ; Park H; Park K
    Methods Mol Biol; 2011; 726():179-85. PubMed ID: 21424450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer actuator valves toward controlled drug delivery application.
    Xu H; Wang C; Wang C; Zoval J; Madou M
    Biosens Bioelectron; 2006 May; 21(11):2094-9. PubMed ID: 16469492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing magnetic flux density of artificial neurons with a MEMS device.
    Tapia JA; Herrera-May AL; García-Ramírez PJ; Martinez-Castillo J; Figueras E; Flores A; Manjarrez E
    Biomed Microdevices; 2011 Apr; 13(2):303-13. PubMed ID: 21113665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications.
    Park J; Kim JK; Patil SJ; Park JK; Park S; Lee DW
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27271619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization.
    Khilwani R; Gilgunn PJ; Kozai TD; Ong XC; Korkmaz E; Gunalan PK; Cui XT; Fedder GK; Ozdoganlar OB
    Biomed Microdevices; 2016 Dec; 18(6):97. PubMed ID: 27778225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.