These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28124766)

  • 1. Why granular media are thermal, and quite normal, after all.
    Jiang Y; Liu M
    Eur Phys J E Soft Matter; 2017 Jan; 40(1):10. PubMed ID: 28124766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compliant contact versus rigid contact: A comparison in the context of granular dynamics.
    Pazouki A; Kwarta M; Williams K; Likos W; Serban R; Jayakumar P; Negrut D
    Phys Rev E; 2017 Oct; 96(4-1):042905. PubMed ID: 29347540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observing brownian motion in vibration-fluidized granular matter.
    D'Anna G; Mayor P; Barrat A; Loreto V; Nori F
    Nature; 2003 Aug; 424(6951):909-12. PubMed ID: 12931179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The jamming route to the glass state in weakly perturbed granular media.
    D'Anna G; Gremaud G
    Nature; 2001 Sep; 413(6854):407-9. PubMed ID: 11574884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Properties of Athermal Granular Materials.
    Farain K; Bonn D
    Phys Rev Lett; 2024 Jul; 133(2):028203. PubMed ID: 39073940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases.
    Gupta R; Alam M
    Phys Rev E; 2018 Jan; 97(1-1):012912. PubMed ID: 29448368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the collision, acoustic and thermal energy dissipation distribution of discrete mass.
    Shengwu Z; Chiming W; Yuanchao Z; Wei X; Yanan L; Jianwei C; Shunzhi Z
    Sci Rep; 2024 Jul; 14(1):16726. PubMed ID: 39030345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Biot waves in porous media with application to unconsolidated granular media.
    Dazel O; Tournat V
    J Acoust Soc Am; 2010 Feb; 127(2):692-702. PubMed ID: 20136191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids under gravity.
    Wakou J; Isobe M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061311. PubMed ID: 23005089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the rheology of cohesive granular media.
    Mandal S; Nicolas M; Pouliquen O
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8366-8373. PubMed ID: 32241886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress fluctuations and macroscopic stick-slip in granular materials.
    Evesque P; Adjémian F
    Eur Phys J E Soft Matter; 2002 Nov; 9(3):253-9. PubMed ID: 15010916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic derivation of discrete hydrodynamics.
    Español P; Anero JG; Zúñiga I
    J Chem Phys; 2009 Dec; 131(24):244117. PubMed ID: 20059064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations.
    Albaba A; Lambert S; Faug T
    Phys Rev E; 2018 May; 97(5-1):052903. PubMed ID: 29906957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.
    Kolvin I; Livne E; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021302. PubMed ID: 20866801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy fluctuations in the homogeneous cooling state of granular gases.
    Brey JJ; García de Soria MI; Maynar P; Ruiz-Montero MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011302. PubMed ID: 15324044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segregation of an intruder in a heated granular dense gas.
    Garzó V; Vega Reyes F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021308. PubMed ID: 22463203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete element modelling of sediment falling in water.
    Wang D; Ho-Minh D; Tan DS
    Eur Phys J E Soft Matter; 2016 Nov; 39(11):112. PubMed ID: 27882468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collisional dissipation rate in shearing flows of granular liquid crystals.
    Berzi D; Thai-Quang N; Guo Y; Curtis J
    Phys Rev E; 2017 May; 95(5-1):050901. PubMed ID: 28618469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scales and kinetics of granular flows.
    Goldhirsch I
    Chaos; 1999 Sep; 9(3):659-672. PubMed ID: 12779862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free Cooling of a Granular Gas of Rodlike Particles in Microgravity.
    Harth K; Trittel T; Wegner S; Stannarius R
    Phys Rev Lett; 2018 May; 120(21):214301. PubMed ID: 29883145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.