BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 281251)

  • 21. Iron uptake and transferrin endocytosis in undifferentiated and differentiated erythroid cells.
    Hradilek A; Neuwirt J
    Biomed Biochim Acta; 1987; 46(2-3):S141-5. PubMed ID: 3473987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The kinetics of iron and transferrin incorporation into rabbit erythroid cells and the nature of stromal-bound iron.
    Martinez-Medellin J; Schulman HM
    Biochim Biophys Acta; 1972 Apr; 264(2):272-4. PubMed ID: 5028505
    [No Abstract]   [Full Text] [Related]  

  • 23. A study of iron transfer from rabbit transferrin to reticulocytes using synthetic chelating agents.
    Morgan EH
    Biochim Biophys Acta; 1971 Jul; 244(1):103-16. PubMed ID: 5000975
    [No Abstract]   [Full Text] [Related]  

  • 24. Uptake and intracellular distribution of iron from transferrin and chelators in erythroid cells.
    Kontoghiorghes GJ; May A
    Biol Met; 1990; 3(3-4):183-7. PubMed ID: 2073459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Metabolic products of microorganisms. 138. Comparative iron transport studies with sideramines on bone marrow cells (type Detroit-98) (author's transl)].
    Barnekow A; Winkelmann G; Zähner H
    Arch Microbiol; 1974; 100(4):329-40. PubMed ID: 4451422
    [No Abstract]   [Full Text] [Related]  

  • 26. Regulation of heme biosynthesis: distinct regulatory features in erythroid cells.
    Ponka P; Schulman HM
    Stem Cells; 1993 May; 11 Suppl 1():24-35. PubMed ID: 8318916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of the transferrin receptor in K562 erythroleukemia cells.
    Cudkowicz A; Klausner RD; Bridges KR
    Prog Clin Biol Res; 1984; 165():509-19. PubMed ID: 6095315
    [No Abstract]   [Full Text] [Related]  

  • 28. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.
    Hamdi A; Roshan TM; Kahawita TM; Mason AB; Sheftel AD; Ponka P
    Biochim Biophys Acta; 2016 Dec; 1863(12):2859-2867. PubMed ID: 27627839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells.
    Sassa S
    J Exp Med; 1976 Feb; 143(2):305-15. PubMed ID: 1249519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron metabolism in K562 erythroleukemic cells.
    Bottomley SS; Wolfe LC; Bridges KR
    J Biol Chem; 1985 Jun; 260(11):6811-5. PubMed ID: 2987233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of transferrin in heme transport.
    Stout DL
    Biochem Biophys Res Commun; 1992 Dec; 189(2):765-70. PubMed ID: 1472048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissociation of iron transport and heme biosynthesis from commitment to terminal maturation of murine erythroleukemia cells.
    Tsiftsoglou AS; Nunez MT; Wong W; Robinson SH
    Proc Natl Acad Sci U S A; 1983 Dec; 80(24):7528-32. PubMed ID: 6324176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequential activation of genes for heme pathway enzymes during erythroid differentiation of mouse Friend virus-transformed erythroleukemia cells.
    Fujita H; Yamamoto M; Yamagami T; Hayashi N; Bishop TR; De Verneuil H; Yoshinaga T; Shibahara S; Morimoto R; Sassa S
    Biochim Biophys Acta; 1991 Nov; 1090(3):311-6. PubMed ID: 1954253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of heme synthesis decreases transferrin receptor expression in mouse erythroleukemia cells.
    Hradilek A; Fuchs O; Neuwirt J
    J Cell Physiol; 1992 Feb; 150(2):327-33. PubMed ID: 1734036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transferrin receptors and iron uptake during erythroid cell development.
    Iacopetta BJ; Morgan EH; Yeoh GC
    Biochim Biophys Acta; 1982 May; 687(2):204-10. PubMed ID: 6284220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of intracellular chelatable iron and oxidative stress on transcription of classical cellular glutathione peroxidase gene in murine erythroleukemia cells.
    Fuchs O
    Neoplasma; 1997; 44(3):184-91. PubMed ID: 9372861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of heme in the regulation of iron uptake during Friend cell differentiation.
    Hradilek A; Fuchs O; Borová J; Neuwirt J
    Acta Biol Med Ger; 1981; 40(4-5):519-23. PubMed ID: 7315097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of hemoglobin synthesis, iron metabolism, and maturation of Friend leukemic cells by 5-amino levulinic acid and hemin.
    Malik Z; Halbrecht I; Djaldetti M
    Differentiation; 1979; 13(2):71-9. PubMed ID: 288721
    [No Abstract]   [Full Text] [Related]  

  • 39. Heme binding to murine erythroleukemia cells. Evidence for a heme receptor.
    Galbraith RA; Sassa S; Kappas A
    J Biol Chem; 1985 Oct; 260(22):12198-202. PubMed ID: 2995365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutation of the Lyn tyrosine kinase delays the progression of Friend virus induced erythroleukemia without affecting susceptibility.
    Subramanian A; Hegde S; Correll PH; Paulson RF
    Leuk Res; 2006 Sep; 30(9):1141-9. PubMed ID: 16527351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.