These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 28125104)

  • 1. Modeling and docking of antibody structures with Rosetta.
    Weitzner BD; Jeliazkov JR; Lyskov S; Marze N; Kuroda D; Frick R; Adolf-Bryfogle J; Biswas N; Dunbrack RL; Gray JJ
    Nat Protoc; 2017 Feb; 12(2):401-416. PubMed ID: 28125104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RosettaAntibody: antibody variable region homology modeling server.
    Sircar A; Kim ET; Gray JJ
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W474-9. PubMed ID: 19458157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting antibody complementarity determining region structures without classification.
    Choi Y; Deane CM
    Mol Biosyst; 2011 Dec; 7(12):3327-34. PubMed ID: 22011953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustification of RosettaAntibody and Rosetta SnugDock.
    Jeliazkov JR; Frick R; Zhou J; Gray JJ
    PLoS One; 2021; 16(3):e0234282. PubMed ID: 33764990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic classification of CDR-L3 in antibodies: implications of the light chain subtypes and the VL-VH interface.
    Kuroda D; Shirai H; Kobori M; Nakamura H
    Proteins; 2009 Apr; 75(1):139-46. PubMed ID: 18798566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Web-accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE).
    Moretti R; Lyskov S; Das R; Meiler J; Gray JJ
    Protein Sci; 2018 Jan; 27(1):259-268. PubMed ID: 28960691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization.
    Weitzner BD; Kuroda D; Marze N; Xu J; Gray JJ
    Proteins; 2014 Aug; 82(8):1611-23. PubMed ID: 24519881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking.
    Sivasubramanian A; Sircar A; Chaudhury S; Gray JJ
    Proteins; 2009 Feb; 74(2):497-514. PubMed ID: 19062174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction.
    Zhu K; Day T; Warshaviak D; Murrett C; Friesner R; Pearlman D
    Proteins; 2014 Aug; 82(8):1646-55. PubMed ID: 24619874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE).
    Lyskov S; Chou FC; Conchúir SÓ; Der BS; Drew K; Kuroda D; Xu J; Weitzner BD; Renfrew PD; Sripakdeevong P; Borgo B; Havranek JJ; Kuhlman B; Kortemme T; Bonneau R; Gray JJ; Das R
    PLoS One; 2013; 8(5):e63906. PubMed ID: 23717507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Loop Modeling of the Antibody Complementarity-Determining Region 3 Using Knowledge-Based Restraints.
    Finn JA; Koehler Leman J; Willis JR; Cisneros A; Crowe JE; Meiler J
    PLoS One; 2016; 11(5):e0154811. PubMed ID: 27182833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building novel binding ligands to B7.1 and B7.2 based on human antibody single variable light chain domains.
    van den Beucken T; van Neer N; Sablon E; Desmet J; Celis L; Hoogenboom HR; Hufton SE
    J Mol Biol; 2001 Jul; 310(3):591-601. PubMed ID: 11439026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational approach for studying antibody-antigen interactions without prior structural information: the anti-testosterone binding antibody as a case study.
    Koivuniemi A; Takkinen K; Nevanen T
    Proteins; 2017 Feb; 85(2):322-331. PubMed ID: 27936519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of fully automated antibody homology modeling protocols in molecular operating environment.
    Maier JK; Labute P
    Proteins; 2014 Aug; 82(8):1599-610. PubMed ID: 24715627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction.
    Oliva B; Bates PA; Querol E; Avilés FX; Sternberg MJ
    J Mol Biol; 1998 Jun; 279(5):1193-210. PubMed ID: 9642095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint.
    Weitzner BD; Gray JJ
    J Immunol; 2017 Jan; 198(1):505-515. PubMed ID: 27872211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody modeling assessment II. Structures and models.
    Teplyakov A; Luo J; Obmolova G; Malia TJ; Sweet R; Stanfield RL; Kodangattil S; Almagro JC; Gilliland GL
    Proteins; 2014 Aug; 82(8):1563-82. PubMed ID: 24633955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-assisted modeling of antibody variable domains.
    Ramos OH
    Methods Mol Biol; 2012; 907():39-55. PubMed ID: 22907344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Tools for Aiding Rational Antibody Design.
    Krawczyk K; Dunbar J; Deane CM
    Methods Mol Biol; 2017; 1529():399-416. PubMed ID: 27914064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes in antibody Fab fragments upon binding and their consequences on the performance of docking algorithms.
    Barozet A; Bianciotto M; Siméon T; Minoux H; Cortés J
    Immunol Lett; 2018 Aug; 200():5-15. PubMed ID: 29885326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.