These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28125157)
1. Impact of temporal resolution on estimating capillary RBC-flux with optical coherence tomography. Li B; Wang H; Fu B; Wang R; Sakadžic S; Boas DA J Biomed Opt; 2017 Jan; 22(1):16014. PubMed ID: 28125157 [TBL] [Abstract][Full Text] [Related]
2. Validation of red blood cell flux and velocity estimations based on optical coherence tomography intensity fluctuations. Marchand PJ; Lu X; Zhang C; Lesage F Sci Rep; 2020 Nov; 10(1):19584. PubMed ID: 33177606 [TBL] [Abstract][Full Text] [Related]
3. Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells. Erdener ŞE; Tang J; Sajjadi A; Kılıç K; Kura S; Schaffer CB; Boas DA J Cereb Blood Flow Metab; 2019 May; 39(5):886-900. PubMed ID: 29168661 [TBL] [Abstract][Full Text] [Related]
4. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography. Tang J; Erdener SE; Fu B; Boas DA Opt Lett; 2017 Oct; 42(19):3976-3979. PubMed ID: 28957175 [TBL] [Abstract][Full Text] [Related]
5. Early capillary flux homogenization in response to neural activation. Lee J; Wu W; Boas DA J Cereb Blood Flow Metab; 2016 Feb; 36(2):375-80. PubMed ID: 26661145 [TBL] [Abstract][Full Text] [Related]
6. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography. Lee J; Wu W; Lesage F; Boas DA J Cereb Blood Flow Metab; 2013 Nov; 33(11):1707-10. PubMed ID: 24022621 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning and Simulation for the Estimation of Red Blood Cell Flux With Optical Coherence Tomography. Stefan S; Kim A; Marchand PJ; Lesage F; Lee J Front Neurosci; 2022; 16():835773. PubMed ID: 35250467 [TBL] [Abstract][Full Text] [Related]
8. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux. Lee J; Jiang JY; Wu W; Lesage F; Boas DA Biomed Opt Express; 2014 Apr; 5(4):1160-72. PubMed ID: 24761298 [TBL] [Abstract][Full Text] [Related]
9. Contribution of low- and high-flux capillaries to slow hemodynamic fluctuations in the cerebral cortex of mice. Li B; Lee J; Boas DA; Lesage F J Cereb Blood Flow Metab; 2016 Aug; 36(8):1351-6. PubMed ID: 27165011 [TBL] [Abstract][Full Text] [Related]
10. Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. Li B; Ohtomo R; Thunemann M; Adams SR; Yang J; Fu B; Yaseen MA; Ran C; Polimeni JR; Boas DA; Devor A; Lo EH; Arai K; Sakadžić S J Cereb Blood Flow Metab; 2020 Mar; 40(3):501-512. PubMed ID: 30829101 [TBL] [Abstract][Full Text] [Related]
11. Temporal profile of rat skeletal muscle capillary haemodynamics during recovery from contractions. Ferreira LF; Padilla DJ; Musch TI; Poole DC J Physiol; 2006 Jun; 573(Pt 3):787-97. PubMed ID: 16581868 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies. Yousefi S; Wang RK Phys Med Biol; 2014 Nov; 59(22):6693-708. PubMed ID: 25327449 [TBL] [Abstract][Full Text] [Related]
13. Measurement of RBC deformation and velocity in capillaries in vivo. Jeong JH; Sugii Y; Minamiyama M; Okamoto K Microvasc Res; 2006 May; 71(3):212-7. PubMed ID: 16624342 [TBL] [Abstract][Full Text] [Related]
14. RBC velocities in single capillaries of mouse and rat brains are the same, despite 10-fold difference in body size. Unekawa M; Tomita M; Tomita Y; Toriumi H; Miyaki K; Suzuki N Brain Res; 2010 Mar; 1320():69-73. PubMed ID: 20085754 [TBL] [Abstract][Full Text] [Related]
15. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer. Kindig CA; Richardson TE; Poole DC J Appl Physiol (1985); 2002 Jun; 92(6):2513-20. PubMed ID: 12015367 [TBL] [Abstract][Full Text] [Related]
16. Velocity measurements of heterogeneous RBC flow in capillary vessels using dynamic laser speckle signal. Li C; Wang R J Biomed Opt; 2017 Apr; 22(4):46002. PubMed ID: 28384709 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneity of red blood cell perfusion in capillary networks supplied by a single arteriole in resting skeletal muscle. Ellis CG; Wrigley SM; Groom AC Circ Res; 1994 Aug; 75(2):357-68. PubMed ID: 8033345 [TBL] [Abstract][Full Text] [Related]
18. Regional myocardial capillary erythrocyte transit time in the normal resting heart. Allard MF; Kamimura CT; English DR; Henning SL; Wiggs BR Circ Res; 1993 Jan; 72(1):187-93. PubMed ID: 8417841 [TBL] [Abstract][Full Text] [Related]
19. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Chaigneau E; Oheim M; Audinat E; Charpak S Proc Natl Acad Sci U S A; 2003 Oct; 100(22):13081-6. PubMed ID: 14569029 [TBL] [Abstract][Full Text] [Related]
20. Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation. Wei W; Li Y; Xie Z; Deegan AJ; Wang RK IEEE Trans Med Imaging; 2019 May; 38(5):1295-1303. PubMed ID: 30489265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]