These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 28125208)
1. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water. Zhang B; DeBartolo JE; Song J ACS Appl Mater Interfaces; 2017 Feb; 9(5):4450-4456. PubMed ID: 28125208 [TBL] [Abstract][Full Text] [Related]
2. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation. Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917 [TBL] [Abstract][Full Text] [Related]
3. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments. Liu W; Wang A; Yang R; Wu H; Shao S; Chen J; Ma Y; Li Z; Wang Y; He X; Li J; Tan H; Fu Q Adv Mater; 2022 Nov; 34(46):e2201914. PubMed ID: 35502474 [TBL] [Abstract][Full Text] [Related]
4. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333 [TBL] [Abstract][Full Text] [Related]
5. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ Acta Biomater; 2015 Sep; 24():53-63. PubMed ID: 26072363 [TBL] [Abstract][Full Text] [Related]
6. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites. Filion TM; Xu J; Prasad ML; Song J Biomaterials; 2011 Feb; 32(4):985-91. PubMed ID: 21040968 [TBL] [Abstract][Full Text] [Related]
9. Effects of Chemical Composition on the Shape Memory Property of Poly(dl-lactide- Han L; Wang Y; Wu L; Wu Z; He Y; Mao H; Gu Z ACS Biomater Sci Eng; 2023 Jan; 9(1):520-530. PubMed ID: 36459430 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in degradable lactide-based shape-memory polymers. Balk M; Behl M; Wischke C; Zotzmann J; Lendlein A Adv Drug Deliv Rev; 2016 Dec; 107():136-152. PubMed ID: 27262926 [TBL] [Abstract][Full Text] [Related]
11. A novel approach to biodegradable block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by new aluminum metal complexes. Yang J; Jia L; Yin L; Yu J; Shi Z; Fang Q; Cao A Macromol Biosci; 2004 Dec; 4(12):1092-104. PubMed ID: 15586386 [TBL] [Abstract][Full Text] [Related]
12. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide). Zhang J; Wang LQ; Wang H; Tu K Biomacromolecules; 2006 Sep; 7(9):2492-500. PubMed ID: 16961309 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, characterization, and morphology studies of biodegradable amphiphilic poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene glycol) multiblock copolymers. Li X; Liu KL; Li J; Tan EP; Chan LM; Lim CT; Goh SH Biomacromolecules; 2006 Nov; 7(11):3112-9. PubMed ID: 17096539 [TBL] [Abstract][Full Text] [Related]
17. Microphase separation in copolymers of hydrophilic PEG blocks and hydrophobic tyrosine-derived segments using simultaneous SAXS/WAXS/DSC. Murthy NS; Wang W; Kohn J Polymer (Guildf); 2010 Aug; 51(17):3978-3988. PubMed ID: 20802835 [TBL] [Abstract][Full Text] [Related]
18. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers. Lu XL; Sun ZJ; Cai W; Gao ZY J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526 [TBL] [Abstract][Full Text] [Related]
19. A biodegradable functional water-responsive shape memory polymer for biomedical applications. Guo Y; Lv Z; Huo Y; Sun L; Chen S; Liu Z; He C; Bi X; Fan X; You Z J Mater Chem B; 2019 Jan; 7(1):123-132. PubMed ID: 32254956 [TBL] [Abstract][Full Text] [Related]