These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 28125286)

  • 1. Plant Biodiversity Change Across Scales During the Anthropocene.
    Vellend M; Baeten L; Becker-Scarpitta A; Boucher-Lalonde V; McCune JL; Messier J; Myers-Smith IH; Sax DF
    Annu Rev Plant Biol; 2017 Apr; 68():563-586. PubMed ID: 28125286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Anthropogenic Plant Extinctions Differ in Biodiversity Hotspots and Coldspots.
    Le Roux JJ; Hui C; Castillo ML; Iriondo JM; Keet JH; Khapugin AA; Médail F; Rejmánek M; Theron G; Yannelli FA; Hirsch H
    Curr Biol; 2019 Sep; 29(17):2912-2918.e2. PubMed ID: 31447372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant extinction excels plant speciation in the Anthropocene.
    Gao JG; Liu H; Wang N; Yang J; Zhang XL
    BMC Plant Biol; 2020 Sep; 20(1):430. PubMed ID: 32938403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change and habitat conversion favour the same species.
    Frishkoff LO; Karp DS; Flanders JR; Zook J; Hadly EA; Daily GC; M'Gonigle LK
    Ecol Lett; 2016 Sep; 19(9):1081-90. PubMed ID: 27396714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios.
    Fagúndez J
    Ann Bot; 2013 Feb; 111(2):151-72. PubMed ID: 23223202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.
    Jantz SM; Barker B; Brooks TM; Chini LP; Huang Q; Moore RM; Noel J; Hurtt GC
    Conserv Biol; 2015 Aug; 29(4):1122-1131. PubMed ID: 26129841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fifteen forms of biodiversity trend in the Anthropocene.
    McGill BJ; Dornelas M; Gotelli NJ; Magurran AE
    Trends Ecol Evol; 2015 Feb; 30(2):104-13. PubMed ID: 25542312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term species loss and homogenization of moth communities in Central Europe.
    Valtonen A; Hirka A; Szőcs L; Ayres MP; Roininen H; Csóka G
    J Anim Ecol; 2017 Jul; 86(4):730-738. PubMed ID: 28423183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agriculture erases climate-driven β-diversity in Neotropical bird communities.
    Karp DS; Frishkoff LO; Echeverri A; Zook J; Juárez P; Chan KMA
    Glob Chang Biol; 2018 Jan; 24(1):338-349. PubMed ID: 28833924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.
    Brown KA; Parks KE; Bethell CA; Johnson SE; Mulligan M
    PLoS One; 2015; 10(4):e0122721. PubMed ID: 25856241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate warming and land-use changes drive broad-scale floristic changes in Southern Sweden.
    Tyler T; Herbertsson L; Olsson PA; Fröberg L; Olsson KA; Svensson Å; Olsson O
    Glob Chang Biol; 2018 Jun; 24(6):2607-2621. PubMed ID: 29282822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agriculture and climate change are reshaping insect biodiversity worldwide.
    Outhwaite CL; McCann P; Newbold T
    Nature; 2022 May; 605(7908):97-102. PubMed ID: 35444282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projecting impacts of global climate and land-use scenarios on plant biodiversity using compositional-turnover modelling.
    Di Marco M; Harwood TD; Hoskins AJ; Ware C; Hill SLL; Ferrier S
    Glob Chang Biol; 2019 Aug; 25(8):2763-2778. PubMed ID: 31009149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal lags in observed and dark diversity in the Anthropocene.
    Trindade DPF; Carmona CP; Pärtel M
    Glob Chang Biol; 2020 Jun; 26(6):3193-3201. PubMed ID: 32282128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Centres of Plant Biodiversity in South Australia.
    Guerin GR; Biffin E; Baruch Z; Lowe AJ
    PLoS One; 2016; 11(1):e0144779. PubMed ID: 26735131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Anthropocene could raise biological diversity.
    Thomas CD
    Nature; 2013 Oct; 502(7469):7. PubMed ID: 24091946
    [No Abstract]   [Full Text] [Related]  

  • 17. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.
    Riordan EC; Rundel PW
    PLoS One; 2014; 9(1):e86487. PubMed ID: 24466116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interactive effects of climate change and land use on boreal stream fish communities.
    Murdoch A; Mantyka-Pringle C; Sharma S
    Sci Total Environ; 2020 Jan; 700():134518. PubMed ID: 31698271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Land use planning to support climate change adaptation in threatened plant communities.
    Vijayan A; Maina JM; Lawson R; Chang HC; Beaumont LJ; Davies PJ
    J Environ Manage; 2021 Nov; 298():113533. PubMed ID: 34411797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico.
    Franklin K; Molina-Freaner F
    Conserv Biol; 2010 Dec; 24(6):1664-73. PubMed ID: 20575988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.