These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2812536)

  • 1. Autogenous oscillatory potentials in neurons of the guinea pig substantia nigra pars compacta in vitro.
    Fujimura K; Matsuda Y
    Neurosci Lett; 1989 Sep; 104(1-2):53-7. PubMed ID: 2812536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones.
    Nedergaard S; Flatman JA; Engberg I
    J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro.
    Yung WH; Häusser MA; Jack JJ
    J Physiol; 1991 May; 436():643-67. PubMed ID: 2061849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-populations of pars compacta neurons in the substantia nigra: the significance of qualitatively and quantitatively distinct conductances.
    Nedergaard S; Greenfield SA
    Neuroscience; 1992; 48(2):423-37. PubMed ID: 1603327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Na+ spike generation in dendrites of guinea-pig substantia nigra pars compacta neurons.
    Nedergaard S; Hounsgaard J
    Neuroscience; 1996 Jul; 73(2):381-96. PubMed ID: 8783256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of calcium spikes revealed during GABAA receptor antagonism in hippocampal CA1 neurons from guinea pigs.
    Miura M; Yoshioka M; Miyakawa H; Kato H; Ito KI
    J Neurophysiol; 1997 Nov; 78(5):2269-79. PubMed ID: 9356380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses to ramp current stimulation of the neurons in substantia nigra pars compacta in vitro.
    Fujimura K; Matsuda Y
    Brain Res; 1988 Dec; 475(1):177-81. PubMed ID: 3214723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate-mediated [Ca2+]c dynamics in spontaneously firing dopamine neurons of the rat substantia nigra pars compacta.
    Choi YM; Kim SH; Uhm DY; Park MK
    J Cell Sci; 2003 Jul; 116(Pt 13):2665-75. PubMed ID: 12746490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscarine reduces calcium-dependent electrical activity in substantia nigra dopaminergic neurons.
    Scroggs RS; Cardenas CG; Whittaker JA; Kitai ST
    J Neurophysiol; 2001 Dec; 86(6):2966-72. PubMed ID: 11731553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical membrane properties of rat substantia nigra compacta neurons in an in vitro slice preparation.
    Kita T; Kita H; Kitai ST
    Brain Res; 1986 Apr; 372(1):21-30. PubMed ID: 3708356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two types of neurons in the substantia nigra pars compacta studied in a slice preparation.
    Matsuda Y; Fujimura K; Yoshida S
    Neurosci Res; 1987 Dec; 5(2):172-9. PubMed ID: 3431756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents.
    Harris NC; Webb C; Greenfield SA
    Neuroscience; 1989; 31(2):355-62. PubMed ID: 2552348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of action potential size and excitability in substantia nigra compacta neurons: sensitivity to 4-aminopyridine.
    Nedergaard S
    J Neurophysiol; 1999 Dec; 82(6):2903-13. PubMed ID: 10601428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta.
    Lacey MG; Mercuri NB; North RA
    J Physiol; 1987 Nov; 392():397-416. PubMed ID: 2451725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons.
    Kim SH; Choi YM; Jang JY; Chung S; Kang YK; Park MK
    Pflugers Arch; 2007 Nov; 455(2):309-21. PubMed ID: 17492308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker.
    Bal T; McCormick DA
    J Physiol; 1993 Aug; 468():669-91. PubMed ID: 8254530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta.
    Giustizieri M; Bernardi G; Mercuri NB; Berretta N
    J Neurophysiol; 2005 Sep; 94(3):1992-2003. PubMed ID: 15944237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons.
    Puopolo M; Raviola E; Bean BP
    J Neurosci; 2007 Jan; 27(3):645-56. PubMed ID: 17234596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electrophysiological properties of substantia nigra pars compacta neurones recorded from 6-hydroxydopamine lesioned guinea-pigs in vitro.
    Harris NC; Greenfield SA
    J Neural Transm Park Dis Dement Sect; 1991; 3(2):89-98. PubMed ID: 1910487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological properties of zebra finch ventral tegmental area and substantia nigra pars compacta neurons.
    Gale SD; Perkel DJ
    J Neurophysiol; 2006 Nov; 96(5):2295-306. PubMed ID: 16870835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.