BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28125610)

  • 1. The Potential Role of Direct and Indirect Contacts on Infection Spread in Dairy Farm Networks.
    Rossi G; De Leo GA; Pongolini S; Natalini S; Zarenghi L; Ricchi M; Bolzoni L
    PLoS Comput Biol; 2017 Jan; 13(1):e1005301. PubMed ID: 28125610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling farm-to-farm disease transmission through personnel movements: from visits to contacts, and back.
    Rossi G; Smith RL; Pongolini S; Bolzoni L
    Sci Rep; 2017 May; 7(1):2375. PubMed ID: 28539663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When resolution does matter: Modelling indirect contacts in dairy farms at different levels of detail.
    Bernini A; Bolzoni L; Casagrandi R
    PLoS One; 2019; 14(10):e0223652. PubMed ID: 31622376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of between-farm transmission of porcine reproductive and respiratory syndrome virus in Ontario, Canada using the North American Animal Disease Spread Model.
    Thakur KK; Revie CW; Hurnik D; Poljak Z; Sanchez J
    Prev Vet Med; 2015 Mar; 118(4):413-26. PubMed ID: 25636969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replicating disease spread in empirical cattle networks by adjusting the probability of infection in random networks.
    Duncan AJ; Gunn GJ; Umstatter C; Humphry RW
    Theor Popul Biol; 2014 Dec; 98():11-8. PubMed ID: 25220357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal variation in proximity networks of commercial dairy cattle in Great Britain.
    Fielding HR; Silk MJ; McKinley TJ; Delahay RJ; Wilson-Aggarwal JK; Gauvin L; Ozella L; Cattuto C; McDonald RA
    Prev Vet Med; 2021 Sep; 194():105443. PubMed ID: 34352518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The topology of between-herd cattle contacts in a mixed farming production system in western Kenya.
    Ogola J; Fèvre EM; Gitau GK; Christley R; Muchemi G; de Glanville WA
    Prev Vet Med; 2018 Oct; 158():43-50. PubMed ID: 30220395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemiological implications of the contact network structure for cattle farms and the 20-80 rule.
    Woolhouse ME; Shaw DJ; Matthews L; Liu WC; Mellor DJ; Thomas MR
    Biol Lett; 2005 Sep; 1(3):350-2. PubMed ID: 17148204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayer network analysis unravels haulage vehicles as a hidden threat to the British swine industry.
    Porphyre T; Bronsvoort BMC; Gunn GJ; Correia-Gomes C
    Transbound Emerg Dis; 2020 May; 67(3):1231-1246. PubMed ID: 31880086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of paratuberculosis spread between dairy cattle farms at a regional scale.
    Beaunée G; Vergu E; Ezanno P
    Vet Res; 2015 Sep; 46():111. PubMed ID: 26407894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network analysis of Italian cattle trade patterns and evaluation of risks for potential disease spread.
    Natale F; Giovannini A; Savini L; Palma D; Possenti L; Fiore G; Calistri P
    Prev Vet Med; 2009 Dec; 92(4):341-50. PubMed ID: 19775765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling direct and indirect contact patterns between duck farms in France and their association with the 2016-2017 epidemic of Highly Pathogenic Avian Influenza (H5N8).
    Bauzile B; Sicard G; Guinat C; Andraud M; Rose N; Hammami P; Durand B; Paul MC; Vergne T
    Prev Vet Med; 2022 Jan; 198():105548. PubMed ID: 34920326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EpiContactTrace: an R-package for contact tracing during livestock disease outbreaks and for risk-based surveillance.
    Nöremark M; Widgren S
    BMC Vet Res; 2014 Mar; 10():71. PubMed ID: 24636731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of company affiliation and social contacts to risk estimates of between-farm transmission of avian influenza.
    Leibler JH; Carone M; Silbergeld EK
    PLoS One; 2010 Mar; 5(3):e9888. PubMed ID: 20360859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayer network analysis of FMD transmission and containment among beef cattle farms.
    Yi C; Yang Q; Scoglio CM
    Sci Rep; 2022 Sep; 12(1):15679. PubMed ID: 36127385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of contact structures for the spread of infectious diseases in a pork supply chain in northern Germany by dynamic network analysis of yearly and monthly networks.
    Büttner K; Krieter J; Traulsen I
    Transbound Emerg Dis; 2015 Apr; 62(2):188-99. PubMed ID: 23692588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplification of the basic reproduction number in cattle farm networks.
    Vidondo B
    PLoS One; 2018; 13(4):e0191257. PubMed ID: 29672512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Within-herd contact structure and transmission of Mycobacterium avium subspecies paratuberculosis in a persistently infected dairy cattle herd.
    Marcé C; Ezanno P; Seegers H; Pfeiffer DU; Fourichon C
    Prev Vet Med; 2011 Jun; 100(2):116-25. PubMed ID: 21549436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network analysis of cattle and pig movements in Sweden: measures relevant for disease control and risk based surveillance.
    Nöremark M; Håkansson N; Lewerin SS; Lindberg A; Jonsson A
    Prev Vet Med; 2011 May; 99(2-4):78-90. PubMed ID: 21288583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pair approximations and the inclusion of indirect transmission: theory and application to between farm transmission of Salmonella.
    Xiao Y; French NP; Bowers RG; Clancy D
    J Theor Biol; 2007 Feb; 244(3):532-40. PubMed ID: 17011588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.