BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28125716)

  • 1. Numerical Simulations Reveal Randomness of Cu(II) Induced Aβ Peptide Dimerization under Conditions Present in Glutamatergic Synapses.
    Goch W; Bal W
    PLoS One; 2017; 12(1):e0170749. PubMed ID: 28125716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitration of amyloid-β peptide (1-42) as a protective mechanism for the amyloid-β peptide (1-42) against copper ion toxicity.
    Zhao J; Gao W; Yang Z; Li H; Gao Z
    J Inorg Biochem; 2019 Jan; 190():15-23. PubMed ID: 30342351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid β Peptide.
    Summers KL; Schilling KM; Roseman G; Markham KA; Dolgova NV; Kroll T; Sokaras D; Millhauser GL; Pickering IJ; George GN
    Inorg Chem; 2019 May; 58(9):6294-6311. PubMed ID: 31013069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of the Potential Role for Aβ in Delivery of Extracellular Copper to Ctr1.
    Stefaniak E; Pushie MJ; Vaerewyck C; Corcelli D; Griggs C; Lewis W; Kelley E; Maloney N; Sendzik M; Bal W; Haas KL
    Inorg Chem; 2020 Dec; 59(23):16952-16966. PubMed ID: 33211469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio modelling of the structure and redox behaviour of copper(I) bound to a His-His model peptide: relevance to the beta-amyloid peptide of Alzheimer's disease.
    Raffa DF; Rickard GA; Rauk A
    J Biol Inorg Chem; 2007 Feb; 12(2):147-64. PubMed ID: 17013614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction rates and mechanism of the ascorbic acid oxidation by molecular oxygen facilitated by Cu(II)-containing amyloid-beta complexes and aggregates.
    Jiang D; Li X; Liu L; Yagnik GB; Zhou F
    J Phys Chem B; 2010 Apr; 114(14):4896-903. PubMed ID: 20302320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key roles of Tyr 10 in Cu bound Aβ complexes and its relevance to Alzheimer's disease.
    Lu N; Li J; Gao Z
    Arch Biochem Biophys; 2015 Oct; 584():1-9. PubMed ID: 26247837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Cu(II) on the aggregation of amyloid-β.
    Weibull MGM; Simonsen S; Oksbjerg CR; Tiwari MK; Hemmingsen L
    J Biol Inorg Chem; 2019 Dec; 24(8):1197-1215. PubMed ID: 31602542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic Analysis Reveals the Identity of Aβ-Metal Complex Responsible for the Initial Aggregation of Aβ in the Synapse.
    Branch T; Barahona M; Dodson CA; Ying L
    ACS Chem Neurosci; 2017 Sep; 8(9):1970-1979. PubMed ID: 28621929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1-42) aggregation and toxicity.
    Bolognin S; Messori L; Drago D; Gabbiani C; Cendron L; Zatta P
    Int J Biochem Cell Biol; 2011 Jun; 43(6):877-85. PubMed ID: 21376832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu(II) potentiation of Alzheimer Abeta1-40 cytotoxicity and transition on its secondary structure.
    Dai XL; Sun YX; Jiang ZF
    Acta Biochim Biophys Sin (Shanghai); 2006 Nov; 38(11):765-72. PubMed ID: 17091193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying, by first-principles simulations, Cu[amyloid-β] species making Fenton-type reactions in Alzheimer's disease.
    La Penna G; Hureau C; Andreussi O; Faller P
    J Phys Chem B; 2013 Dec; 117(51):16455-67. PubMed ID: 24313818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers.
    Rana M; Sharma AK
    Metallomics; 2019 Jan; 11(1):64-84. PubMed ID: 30234208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using N-Terminal Coordination of Cu(II) and Ni(II) to Isolate the Coordination Environment of Cu(I) and Cu(II) Bound to His13 and His14 in Amyloid-β(4-16).
    Pushie MJ; Stefaniak E; Sendzik MR; Sokaras D; Kroll T; Haas KL
    Inorg Chem; 2019 Nov; 58(22):15138-15154. PubMed ID: 31657204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron.
    Tahmasebinia F; Emadi S
    Biometals; 2017 Apr; 30(2):285-293. PubMed ID: 28281098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of Cu
    Taniguchi M; Saito M; Kuga T; Yamagishi N
    Biochem Biophys Res Commun; 2021 Jan; 534():617-623. PubMed ID: 33208229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu(2+) affects amyloid-β (1-42) aggregation by increasing peptide-peptide binding forces.
    Hane F; Tran G; Attwood SJ; Leonenko Z
    PLoS One; 2013; 8(3):e59005. PubMed ID: 23536847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Cu(II) Binding on Structures and Dynamics of Aβ
    Huy PD; Vuong QV; La Penna G; Faller P; Li MS
    ACS Chem Neurosci; 2016 Oct; 7(10):1348-1363. PubMed ID: 27454036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper mediates dityrosine cross-linking of Alzheimer's amyloid-beta.
    Atwood CS; Perry G; Zeng H; Kato Y; Jones WD; Ling KQ; Huang X; Moir RD; Wang D; Sayre LM; Smith MA; Chen SG; Bush AI
    Biochemistry; 2004 Jan; 43(2):560-8. PubMed ID: 14717612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species.
    Tiiman A; Luo J; Wallin C; Olsson L; Lindgren J; Jarvet J; Per R; Sholts SB; Rahimipour S; Abrahams JP; Karlström AE; Gräslund A; Wärmländer SK
    J Alzheimers Dis; 2016 Oct; 54(3):971-982. PubMed ID: 27567855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.