These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28125777)

  • 21. Self-assembly of precisely defined DNA nanotube superstructures using DNA origami seeds.
    Mohammed AM; Velazquez L; Chisenhall A; Schiffels D; Fygenson DK; Schulman R
    Nanoscale; 2017 Jan; 9(2):522-526. PubMed ID: 27957574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes.
    Hemraz UD; El-Bakkari M; Yamazaki T; Cho JY; Beingessner RL; Fenniri H
    Nanoscale; 2014 Aug; 6(16):9421-7. PubMed ID: 24770905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study on a special DNA nanotube assembled from two single-stranded tiles.
    Xu F; Wu T; Shi X; Pan L
    Nanotechnology; 2019 Mar; 30(11):115602. PubMed ID: 30566929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures.
    Ke Y; Liu Y; Zhang J; Yan H
    J Am Chem Soc; 2006 Apr; 128(13):4414-21. PubMed ID: 16569019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled Self-Assembly of DNA-Mimicking Nanotubes to Form a Layer-by-Layer Scaffold for Homeostatic Tissue Constructs.
    Zhou L; Zhang W; Lee J; Kuhn L; Chen Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51321-51332. PubMed ID: 34663065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and mechanical study of a self-assembling protein nanotube.
    Graveland-Bikker JF; Schaap IA; Schmidt CF; de Kruif CG
    Nano Lett; 2006 Apr; 6(4):616-21. PubMed ID: 16608254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Programming DNA Tube Circumference by Tile Offset Connection.
    Zhang Y; Chen X; Kang G; Peng R; Pan V; Sundaresan R; Wang P; Ke Y
    J Am Chem Soc; 2019 Dec; 141(50):19529-19532. PubMed ID: 31793775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembled nanotubes and helical tapes from diacetylene nonionic amphiphiles. Structural studies before and after polymerization.
    Perino A; Schmutz M; Meunier S; Mésini PJ; Wagner A
    Langmuir; 2011 Oct; 27(19):12149-55. PubMed ID: 21902211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple design for DNA nanotubes from a minimal set of unmodified strands: rapid, room-temperature assembly and readily tunable structure.
    Hamblin GD; Hariri AA; Carneiro KM; Lau KL; Cosa G; Sleiman HF
    ACS Nano; 2013 Apr; 7(4):3022-8. PubMed ID: 23452006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics Simulation of Self-Assembly Processes of Diphenylalanine Peptide Nanotubes and Determination of Their Chirality.
    Bystrov V; Likhachev I; Filippov S; Paramonova E
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sturdier DNA nanotubes via ligation.
    O'Neill P; Rothemund PW; Kumar A; Fygenson DK
    Nano Lett; 2006 Jul; 6(7):1379-83. PubMed ID: 16834415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron cryo-microscopy of TPPS4⋅2HCl tubes reveals a helical organisation explaining the origin of their chirality.
    Short JM; Berriman JA; Kübel C; El-Hachemi Z; Naubron JV; Balaban TS
    Chemphyschem; 2013 Oct; 14(14):3209-14. PubMed ID: 23908093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of Nanotubes Self-Assembled from a Monoamide Organogelator.
    Zapién-Castillo S; Díaz-Zavala NP; Melo-Banda JA; Schwaller D; Lamps JP; Schmutz M; Combet J; Mésini PJ
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32674288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Rule of Thirds: Controlling Junction Chirality and Polarity in 3D DNA Tiles.
    Vecchioni S; Lu B; Janowski J; Woloszyn K; Jonoska N; Seeman NC; Mao C; Ohayon YP; Sha R
    Small; 2023 Mar; 19(12):e2206511. PubMed ID: 36585389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications.
    Liu X; Zhao Y; Liu P; Wang L; Lin J; Fan C
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):8996-9011. PubMed ID: 30290046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of mesoporous titanium oxide nanotubes based on layer-by-layer assembly.
    Ai S; He Q; Tian Y; Li J
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2534-7. PubMed ID: 17663278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic self-assembly of DNA minor groove-binding ligand DB921 into nanotubes triggered by an alkali halide.
    Mizuta R; Devos JM; Webster J; Ling WL; Narayanan T; Round A; Munnur D; Mossou E; Farahat AA; Boykin DW; Wilson WD; Neidle S; Schweins R; Rannou P; Haertlein M; Forsyth VT; Mitchell EP
    Nanoscale; 2018 Mar; 10(12):5550-5558. PubMed ID: 29517086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
    Pearce TR; Kokkoli E
    Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loading and selective release of cargo in DNA nanotubes with longitudinal variation.
    Lo PK; Karam P; Aldaye FA; McLaughlin CK; Hamblin GD; Cosa G; Sleiman HF
    Nat Chem; 2010 Apr; 2(4):319-28. PubMed ID: 21124515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.