These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28125777)

  • 41. One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures.
    Cassinelli V; Oberleitner B; Sobotta J; Nickels P; Grossi G; Kempter S; Frischmuth T; Liedl T; Manetto A
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7795-8. PubMed ID: 25980669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes.
    Chen ZG; Zou J; Liu Q; Sun C; Liu G; Yao X; Li F; Wu B; Yuan XL; Sekiguchi T; Cheng HM; Lu GQ
    ACS Nano; 2008 Aug; 2(8):1523-32. PubMed ID: 19206355
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular basis for water-promoted supramolecular chirality inversion in helical rosette nanotubes.
    Johnson RS; Yamazaki T; Kovalenko A; Fenniri H
    J Am Chem Soc; 2007 May; 129(17):5735-43. PubMed ID: 17417852
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DNA nanotubes assembled from tensegrity triangle tiles with circular DNA scaffolds.
    Afshan N; Ali M; Wang M; Baig MMFA; Xiao SJ
    Nanoscale; 2017 Nov; 9(44):17181-17185. PubMed ID: 29091094
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Helical DNA origami tubular structures with various sizes and arrangements.
    Endo M; Yamamoto S; Emura T; Hidaka K; Morone N; Heuser JE; Sugiyama H
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7484-90. PubMed ID: 24888699
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DNA Nanotubes as a Versatile Tool to Study Semiflexible Polymers.
    Schnauß J; Glaser M; Lorenz JS; Schuldt C; Möser C; Sajfutdinow M; Händler T; Käs JA; Smith DM
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29155710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-assembling DNA nanotubes to connect molecular landmarks.
    Mohammed AM; Šulc P; Zenk J; Schulman R
    Nat Nanotechnol; 2017 May; 12(4):312-316. PubMed ID: 27992412
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-assembled ultralong chiral nanotubes and tuning of their chirality through the mixing of enantiomeric components.
    Zhu X; Li Y; Duan P; Liu M
    Chemistry; 2010 Jul; 16(27):8034-40. PubMed ID: 20521286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Joining and scission in the self-assembly of nanotubes from DNA tiles.
    Ekani-Nkodo A; Kumar A; Fygenson DK
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):268301. PubMed ID: 15698032
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions.
    Rahbani JF; Hariri AA; Cosa G; Sleiman HF
    ACS Nano; 2015 Dec; 9(12):11898-908. PubMed ID: 26556531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Foldamers to nanotubes: influence of amino acid side chains in the hierarchical assembly of α,γ(4)-hybrid peptide helices.
    Jadhav SV; Misra R; Gopi HN
    Chemistry; 2014 Dec; 20(50):16523-8. PubMed ID: 25346477
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules.
    Yang Y; Liang J; Pan F; Wang Z; Zhang J; Amin K; Fang J; Zou W; Chen Y; Shi X; Wei Z
    Nat Commun; 2018 Sep; 9(1):3808. PubMed ID: 30228273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Condensed Supramolecular Helices: The Twisted Sisters of DNA.
    Du G; Belić D; Del Giudice A; Alfredsson V; Carnerup AM; Zhu K; Nyström B; Wang Y; Galantini L; Schillén K
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202113279. PubMed ID: 34757695
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chiral and achiral mechanisms of self-limiting assembly of twisted bundles.
    Grason GM
    Soft Matter; 2020 Jan; 16(4):1102-1116. PubMed ID: 31894228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MgO nanowire growth from Mg metal and SiO2.
    Hu L; Li YX; Qu JP; Huang ZX; Huang XT; Ding XX; Tang C; Qi SR
    J Nanosci Nanotechnol; 2004 Nov; 4(8):1071-5. PubMed ID: 15656205
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-assembly of DNA nanotubes with defined diameters and lengths.
    Qian H; Tian C; Yu J; Guo F; Zheng MS; Jiang W; Dong QF; Mao C
    Small; 2014 Mar; 10(5):855-8. PubMed ID: 24745047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reconfigurable Microscale Frameworks from Concatenated Helices with Controlled Chirality.
    Jeon SJ; Hayward RC
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28221713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlled synthesis of Y-junction polyaniline nanorods and nanotubes using in situ self-assembly of magnetic nanoparticles.
    Xia H; Cheng D; Xiao C; Chan HS
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3950-4. PubMed ID: 17256360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA Nanostructures-Mediated Molecular Imprinting Lithography.
    Tian C; Kim H; Sun W; Kim Y; Yin P; Liu H
    ACS Nano; 2017 Jan; 11(1):227-238. PubMed ID: 28052196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Base pair fluctuations in helical models for nucleic acids.
    Zoli M
    J Chem Phys; 2021 May; 154(19):194102. PubMed ID: 34240895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.