These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28125884)

  • 21. Structured microparticles with tailored properties produced by membrane emulsification.
    Vladisavljević GT
    Adv Colloid Interface Sci; 2015 Nov; 225():53-87. PubMed ID: 26329593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aqueous Polymeric Hollow Particles as an Opacifier by Emulsion Polymerization Using Macro-RAFT Amphiphiles.
    Pham BTT; Nguyen D; Huynh VT; Pan EH; Shirodkar-Robinson B; Carey M; Serelis AK; Warr GG; Davey T; Such CH; Hawkett BS
    Langmuir; 2018 Apr; 34(14):4255-4263. PubMed ID: 29517236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals.
    Xu X; Asher SA
    J Am Chem Soc; 2004 Jun; 126(25):7940-5. PubMed ID: 15212543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile fabrication of monodisperse polymer hollow spheres.
    Lv H; Lin Q; Zhang K; Yu K; Yao T; Zhang X; Zhang J; Yang B
    Langmuir; 2008 Dec; 24(23):13736-41. PubMed ID: 18954151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microencapsulation of Ascorbic Acid for Cosmetic by Utilizing Self-assembly of Phase Separated Polymer.
    Nakai S; Nakai A; Michida T
    Chem Pharm Bull (Tokyo); 2016; 64(10):1514-1518. PubMed ID: 27725506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly charged hollow latex particles prepared via seeded emulsion polymerization.
    Nuasaen S; Tangboriboonrat P
    J Colloid Interface Sci; 2013 Apr; 396():75-82. PubMed ID: 23428072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of poly(acrylic acid) particles by dispersion polymerization in an ionic liquid.
    Minami H; Kimura A; Kinoshita K; Okubo M
    Langmuir; 2010 May; 26(9):6303-7. PubMed ID: 20043688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoreactive, core-shell cross-linked/hollow microspheres prepared by delayed addition of cross-linker in dispersion polymerization for antifouling and immobilization of protein.
    Wang S; Yue K; Liu L; Yang W
    J Colloid Interface Sci; 2013 Jan; 389(1):126-33. PubMed ID: 23026299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of Monodisperse Bio-Based Polymer Particles via Dispersion Polymerization.
    Onita K; Onishi M; Omura T; Wakiya T; Suzuki T; Minami H
    Langmuir; 2022 Jun; 38(23):7341-7345. PubMed ID: 35652571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hollow and Core-Shell Microgels at Oil-Water Interfaces: Spreading of Soft Particles Reduces the Compressibility of the Monolayer.
    Geisel K; Rudov AA; Potemkin II; Richtering W
    Langmuir; 2015 Dec; 31(48):13145-54. PubMed ID: 26575794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emulsion Templating Cyclic Polymers as Microscopic Particles with Tunable Porous Morphology.
    Wang D; Xiao L; Zhang X; Zhang K; Wang Y
    Langmuir; 2016 Feb; 32(6):1460-7. PubMed ID: 26799826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling the morphology of poly(N-cyanoethylpyrrole).
    Fabregat G; Alemán C; Casas MT; Armelin E
    J Phys Chem B; 2012 Apr; 116(16):5064-70. PubMed ID: 22497587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface morphology control of cross-linked polymer particles via dispersion polymerization.
    Peng B; Imhof A
    Soft Matter; 2015 May; 11(18):3589-98. PubMed ID: 25793973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Size-controlled synthesis of polymer hollow nanoparticles using emulsion templates prepared by tandem acoustic emulsification.
    Koshino M; Shiraishi Y; Atobe M
    Ultrason Sonochem; 2019 Jun; 54():250-255. PubMed ID: 30712860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of non-spherical polymer particles using the activated swelling method.
    Russo G; Lattuada M
    J Colloid Interface Sci; 2022 Apr; 611():377-389. PubMed ID: 34971960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and Swelling Properties of Poly(NIPAM) "Minigel" Particles Prepared by Inverse Suspension Polymerization.
    Dowding PJ; Vincent B; Williams E
    J Colloid Interface Sci; 2000 Jan; 221(2):268-272. PubMed ID: 10631030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation, characterization, and properties of hollow Janus particles with tailored shapes.
    Hou H; Yu D; Tian Q; Hu G
    Langmuir; 2014 Feb; 30(7):1741-7. PubMed ID: 24490697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of micron-sized monodisperse poly(ionic liquid) particles.
    Tokuda M; Minami H; Mizuta Y; Yamagami T
    Macromol Rapid Commun; 2012 Jul; 33(13):1130-4. PubMed ID: 22434597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particles and hollow particles.
    Zou H; Wu S; Shen J
    Langmuir; 2008 Sep; 24(18):10453-61. PubMed ID: 18698854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.