BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28126037)

  • 21. Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes.
    Schöpflin R; Melo US; Moeinzadeh H; Heller D; Laupert V; Hertzberg J; Holtgrewe M; Alavi N; Klever MK; Jungnitsch J; Comak E; Türkmen S; Horn D; Duffourd Y; Faivre L; Callier P; Sanlaville D; Zuffardi O; Tenconi R; Kurtas NE; Giglio S; Prager B; Latos-Bielenska A; Vogel I; Bugge M; Tommerup N; Spielmann M; Vitobello A; Kalscheuer VM; Vingron M; Mundlos S
    Nat Commun; 2022 Oct; 13(1):6470. PubMed ID: 36309531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Starfish infers signatures of complex genomic rearrangements across human cancers.
    Bao L; Zhong X; Yang Y; Yang L
    Nat Cancer; 2022 Oct; 3(10):1247-1259. PubMed ID: 35835961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multigenic truncation of the semaphorin-plexin pathway by a germline chromothriptic rearrangement associated with Moebius syndrome.
    Nazaryan-Petersen L; Oliveira IR; Mehrjouy MM; Mendez JMM; Bak M; Bugge M; Kalscheuer VM; Bache I; Hancks DC; Tommerup N
    Hum Mutat; 2019 Aug; 40(8):1057-1062. PubMed ID: 31033088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks.
    Hossini AM; Megges M; Prigione A; Lichtner B; Toliat MR; Wruck W; Schröter F; Nuernberg P; Kroll H; Makrantonaki E; Zouboulis CC; Adjaye J
    BMC Genomics; 2015 Feb; 16(1):84. PubMed ID: 25765079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New locus underlying auriculocondylar syndrome (ARCND): 430 kb duplication involving
    Romanelli Tavares VL; Guimarães-Ramos SL; Zhou Y; Masotti C; Ezquina S; Moreira DP; Buermans H; Freitas RS; Den Dunnen JT; Twigg SRF; Passos-Bueno MR
    J Med Genet; 2022 Sep; 59(9):895-905. PubMed ID: 34750192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders.
    Zepeda-Mendoza CJ; Morton CC
    Am J Hum Genet; 2019 Apr; 104(4):565-577. PubMed ID: 30951674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline.
    Kloosterman WP; Guryev V; van Roosmalen M; Duran KJ; de Bruijn E; Bakker SC; Letteboer T; van Nesselrooij B; Hochstenbach R; Poot M; Cuppen E
    Hum Mol Genet; 2011 May; 20(10):1916-24. PubMed ID: 21349919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neoantigenic Potential of Complex Chromosomal Rearrangements in Mesothelioma.
    Mansfield AS; Peikert T; Smadbeck JB; Udell JBM; Garcia-Rivera E; Elsbernd L; Erskine CL; Van Keulen VP; Kosari F; Murphy SJ; Ren H; Serla VV; Schaefer Klein JL; Karagouga G; Harris FR; Sosa C; Johnson SH; Nevala W; Markovic SN; Bungum AO; Edell ES; Dong H; Cheville JC; Aubry MC; Jen J; Vasmatzis G
    J Thorac Oncol; 2019 Feb; 14(2):276-287. PubMed ID: 30316012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptomics analysis of iPSC-derived neurons and modeling of neuropsychiatric disorders.
    Lin M; Lachman HM; Zheng D
    Mol Cell Neurosci; 2016 Jun; 73():32-42. PubMed ID: 26631648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinformatic pipelines for whole transcriptome sequencing data exploitation in leukemia patients with complex structural variants.
    Hynst J; Plevova K; Radova L; Bystry V; Pal K; Pospisilova S
    PeerJ; 2019; 7():e7071. PubMed ID: 31223530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms.
    Malhotra A; Lindberg M; Faust GG; Leibowitz ML; Clark RA; Layer RM; Quinlan AR; Hall IM
    Genome Res; 2013 May; 23(5):762-76. PubMed ID: 23410887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated transcriptome analysis of human iPS cells derived from a fragile X syndrome patient during neuronal differentiation.
    Lu P; Chen X; Feng Y; Zeng Q; Jiang C; Zhu X; Fan G; Xue Z
    Sci China Life Sci; 2016 Nov; 59(11):1093-1105. PubMed ID: 27730449
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Hirsch N; Dahan I; D'haene E; Avni M; Vergult S; Vidal-García M; Magini P; Graziano C; Severi G; Bonora E; Nardone AM; Brancati F; Fernández-Jaén A; Rory OJ; Hallgrímsson B; Birnbaum RY
    Genome Res; 2022 Jul; 32(7):1242-1253. PubMed ID: 35710300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constitutional chromothripsis involving the critical region of 9q21.13 microdeletion syndrome.
    Genesio R; Fontana P; Mormile A; Casertano A; Falco M; Conti A; Franzese A; Mozzillo E; Nitsch L; Melis D
    Mol Cytogenet; 2015; 8():96. PubMed ID: 26689541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A germline chromothripsis event stably segregating in 11 individuals through three generations.
    Bertelsen B; Nazaryan-Petersen L; Sun W; Mehrjouy MM; Xie G; Chen W; Hjermind LE; Taschner PE; Tümer Z
    Genet Med; 2016 May; 18(5):494-500. PubMed ID: 26312826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two Patients with Complex Rearrangements Suggestive of Germline Chromoanagenesis.
    Arya P; Hodge JC; Matlock PA; Vance GH; Breman AM
    Cytogenet Genome Res; 2020; 160(11-12):671-679. PubMed ID: 33535208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Germline mutation screening of the Saethre-Chotzen-associated genes TWIST1 and FGFR3 in families with BRCA1/2-negative breast cancer.
    Bergman A; Sahlin P; Emanuelsson M; Carén H; Tarnow P; Martinsson T; Grönberg H; Stenman G
    Scand J Plast Reconstr Surg Hand Surg; 2009; 43(5):251-5. PubMed ID: 19863427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromothripsis, a credible chromosomal mechanism in evolutionary process.
    Pellestor F; Gatinois V
    Chromosoma; 2019 Mar; 128(1):1-6. PubMed ID: 30088093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromothripsis with at least 12 breaks at 1p36.33-p35.3 in a boy with multiple congenital anomalies.
    Gamba BF; Richieri-Costa A; Costa S; Rosenberg C; Ribeiro-Bicudo LA
    Mol Genet Genomics; 2015 Dec; 290(6):2213-6. PubMed ID: 26040972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The genomic characteristics and cellular origin of chromothripsis.
    Storchová Z; Kloosterman WP
    Curr Opin Cell Biol; 2016 Jun; 40():106-113. PubMed ID: 27023493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.