BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 28126229)

  • 1. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling.
    Chen W; Adhikari S; Chen L; Lin L; Li H; Luo S; Yang P; Tian R
    J Chromatogr A; 2017 May; 1498():207-214. PubMed ID: 28126229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling.
    Chen W; Wang S; Adhikari S; Deng Z; Wang L; Chen L; Ke M; Yang P; Tian R
    Anal Chem; 2016 May; 88(9):4864-71. PubMed ID: 27062885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling.
    Xue L; Lin L; Zhou W; Chen W; Tang J; Sun X; Huang P; Tian R
    J Chromatogr A; 2018 Aug; 1564():76-84. PubMed ID: 29935814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated strategy for highly sensitive phosphoproteome analysis from low micrograms of protein samples.
    Chen W; Chen L; Tian R
    Analyst; 2018 Jul; 143(15):3693-3701. PubMed ID: 29978859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A versatile reversed phase-strong cation exchange-reversed phase (RP-SCX-RP) multidimensional liquid chromatography platform for qualitative and quantitative shotgun proteomics.
    Law HC; Kong RP; Szeto SS; Zhao Y; Zhang Z; Wang Y; Li G; Quan Q; Lee SM; Lam HC; Chu IK
    Analyst; 2015 Feb; 140(4):1237-52. PubMed ID: 25554751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online nanoflow reversed phase-strong anion exchange-reversed phase liquid chromatography-tandem mass spectrometry platform for efficient and in-depth proteome sequence analysis of complex organisms.
    Zhou F; Sikorski TW; Ficarro SB; Webber JT; Marto JA
    Anal Chem; 2011 Sep; 83(18):6996-7005. PubMed ID: 21851055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AutoProteome Chip System for Fully Automated and Integrated Proteomics Sample Preparation and Peptide Fractionation.
    Lu X; Wang Z; Gao Y; Chen W; Wang L; Huang P; Gao W; Ke M; He A; Tian R
    Anal Chem; 2020 Jul; 92(13):8893-8900. PubMed ID: 32490667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin column-based peptide fractionation alternatives for streamlined tandem mass tag (SL-TMT) sample processing.
    Liu X; Rossio V; Paulo JA
    J Proteomics; 2023 Mar; 276():104839. PubMed ID: 36758854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trimodal Mixed Mode Chromatography That Enables Efficient Offline Two-Dimensional Peptide Fractionation for Proteome Analysis.
    Yu P; Petzoldt S; Wilhelm M; Zolg DP; Zheng R; Sun X; Liu X; Schneider G; Huhmer A; Kuster B
    Anal Chem; 2017 Sep; 89(17):8884-8891. PubMed ID: 28759994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated strategy for high-sensitive and multi-level glycoproteome analysis from low micrograms of protein samples.
    Gao W; Li H; Liu L; Huang P; Wang Z; Chen W; Ye M; Yu X; Tian R
    J Chromatogr A; 2019 Aug; 1600():46-54. PubMed ID: 31036360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online coupling of hydrophilic interaction/strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis.
    Zhao Y; Law HC; Zhang Z; Lam HC; Quan Q; Li G; Chu IK
    J Chromatogr A; 2015 Oct; 1415():57-66. PubMed ID: 26362810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated and Quantitative Proteomic Approach for Charting Temporal and Endogenous Protein Complexes.
    Ke M; Liu J; Chen W; Chen L; Gao W; Qin Y; He A; Chu B; Tang J; Xu R; Deng Y; Tian R
    Anal Chem; 2018 Nov; 90(21):12574-12583. PubMed ID: 30280895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein- versus peptide fractionation in the first dimension of two-dimensional high-performance liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry for qualitative proteome analysis of tissue samples.
    Melchior K; Tholey A; Heisel S; Keller A; Lenhof HP; Meese E; Huber CG
    J Chromatogr A; 2010 Oct; 1217(40):6159-68. PubMed ID: 20810122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics.
    Valeja SG; Xiu L; Gregorich ZR; Guner H; Jin S; Ge Y
    Anal Chem; 2015; 87(10):5363-5371. PubMed ID: 25867201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proteomic analysis improved by cleavage kinetics-based fractionation of tryptic peptides.
    Pan Y; Mao J; Deng Z; Dong M; Bian Y; Ye M; Zou H
    Proteomics; 2015 Nov; 15(21):3613-6. PubMed ID: 26256691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
    Yang Y; Tian R
    Se Pu; 2020 Oct; 38(10):1125-1132. PubMed ID: 34213109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein pre-fractionation with a mixed-bed ion exchange column in 3D LC-MS/MS proteome analysis.
    Zhang L; Yao L; Zhang Y; Xue T; Dai G; Chen K; Hu X; Xu LX
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Sep; 905():96-104. PubMed ID: 22939632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of low-abundance proteins using the proteomic reactor with pH fractionation.
    Zhou H; Hou W; Lambert JP; Tian R; Figeys D
    Talanta; 2010 Feb; 80(4):1526-31. PubMed ID: 20082810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.
    Han G; Ye M; Zhou H; Jiang X; Feng S; Jiang X; Tian R; Wan D; Zou H; Gu J
    Proteomics; 2008 Apr; 8(7):1346-61. PubMed ID: 18318008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidimensional separation of tryptic peptides from human serum proteins using reversed-phase, strong cation exchange, weak anion exchange, and fused-core fluorinated stationary phases.
    Boichenko AP; Govorukhina N; van der Zee AG; Bischoff R
    J Sep Sci; 2013 Nov; 36(21-22):3463-70. PubMed ID: 24039020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.