These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 28126246)
1. Field data and numerical simulation of btex concentration trends under water table fluctuations: Example of a jet fuel-contaminated site in Brazil. Teramoto EH; Chang HK J Contam Hydrol; 2017 Mar; 198():37-47. PubMed ID: 28126246 [TBL] [Abstract][Full Text] [Related]
2. A practical tool for estimating subsurface LNAPL distributions and transmissivity using current and historical fluid levels in groundwater wells: Effects of entrapped and residual LNAPL. Lenhard RJ; Rayner JL; Davis GB J Contam Hydrol; 2017 Oct; 205():1-11. PubMed ID: 28797669 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of hydrocarbon mineralization characterized by isotopic analysis at a jet-fuel-contaminated site in subtropical climate. Teramoto EH; Vogt C; Martins Baessa MP; Polese L; Soriano AU; Chang HK; Richnow HH J Contam Hydrol; 2020 Oct; 234():103684. PubMed ID: 32711211 [TBL] [Abstract][Full Text] [Related]
4. Multiphase migration and transformation of BTEX on groundwater table fluctuation in riparian petrochemical sites. Yang Y; Li J; Lv N; Wang H; Zhang H Environ Sci Pollut Res Int; 2023 Apr; 30(19):55756-55767. PubMed ID: 36905541 [TBL] [Abstract][Full Text] [Related]
5. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid. Dobson R; Schroth MH; Zeyer J J Contam Hydrol; 2007 Dec; 94(3-4):235-48. PubMed ID: 17698242 [TBL] [Abstract][Full Text] [Related]
6. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table. Kim J; Corapcioglu MY J Contam Hydrol; 2003 Aug; 65(1-2):137-58. PubMed ID: 12855205 [TBL] [Abstract][Full Text] [Related]
7. The effects of water table fluctuation on LNAPL deposit in highly permeable porous media: A coupled numerical and experimental study. Koohbor B; Colombano S; Harrouet T; Deparis J; Lion F; Davarzani D; Ataie-Ashtiani B J Contam Hydrol; 2023 May; 256():104183. PubMed ID: 37116372 [TBL] [Abstract][Full Text] [Related]
8. LNAPL transmissivity as a remediation metric in complex sites under water table fluctuations. Gatsios E; García-Rincón J; Rayner JL; McLaughlan RG; Davis GB J Environ Manage; 2018 Jun; 215():40-48. PubMed ID: 29554626 [TBL] [Abstract][Full Text] [Related]
9. Redistribution of contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer: field observations and model simulations. Fretwell BA; Burgess WG; Barker JA; Jefferies NL J Contam Hydrol; 2005 Jun; 78(1-2):27-52. PubMed ID: 15949606 [TBL] [Abstract][Full Text] [Related]
10. Persistence of LNAPL sources: relationship between risk reduction and LNAPL recovery. Huntley D; Beckett GD J Contam Hydrol; 2002 Nov; 59(1-2):3-26. PubMed ID: 12683637 [TBL] [Abstract][Full Text] [Related]
11. An experimental multi-method approach to better characterize the LNAPL fate in soil under fluctuating groundwater levels. Cavelan A; Faure P; Lorgeoux C; Colombano S; Deparis J; Davarzani D; Enjelvin N; Oltean C; Tinet AJ; Domptail F; Golfier F J Contam Hydrol; 2024 Mar; 262():104319. PubMed ID: 38359773 [TBL] [Abstract][Full Text] [Related]
12. The Migration Mechanism of BTEX in Single- and Double-Lithology Soil Columns under Groundwater Table Fluctuation. Zheng J; Yang Y; Li J; Zhang H; Ma Y Toxics; 2023 Jul; 11(7):. PubMed ID: 37505595 [TBL] [Abstract][Full Text] [Related]
13. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater. Ramos DT; Lazzarin HSC; Alvarez PJJ; Vogel TM; Fernandes M; do Rosário M; Corseuil HX J Contam Hydrol; 2016 Oct; 193():48-53. PubMed ID: 27636988 [TBL] [Abstract][Full Text] [Related]
14. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer. Cohen GJV; Jousse F; Luze N; Höhener P; Atteia O J Contam Hydrol; 2016 Sep; 192():20-34. PubMed ID: 27341018 [TBL] [Abstract][Full Text] [Related]
15. Lab-based investigation of enhanced BTEX attenuation driven by groundwater table fluctuation. Yang YS; Li P; Zhang X; Li M; Lu Y; Xu B; Yu T Chemosphere; 2017 Feb; 169():678-684. PubMed ID: 27912192 [TBL] [Abstract][Full Text] [Related]
16. PAHs and BTEX in groundwater of gasoline stations from Rio de Janeiro City, Brazil. do Rego EC; Pereira Netto AD Bull Environ Contam Toxicol; 2007 Dec; 79(6):660-4. PubMed ID: 17999019 [TBL] [Abstract][Full Text] [Related]
17. Experimental and theoretical investigation of LNAPL movement in stratified media during soil remediation. Lashanizadegan A; Ayatollahi Sh; Kazemi H Environ Technol; 2007 Jul; 28(7):743-50. PubMed ID: 17674647 [TBL] [Abstract][Full Text] [Related]
18. A Mathematical View of Water Table Fluctuations in a Shallow Aquifer in Brazil. Neto DC; Chang HK; van Genuchten MT Ground Water; 2016 Jan; 54(1):82-91. PubMed ID: 25818697 [TBL] [Abstract][Full Text] [Related]
19. Migration behaviour of LNAPL in fractures filled with porous media: Laboratory experiments and numerical simulations. Shen H; Huang Y; Illman WA; Su Y; Miao K J Contam Hydrol; 2023 Feb; 253():104118. PubMed ID: 36563651 [TBL] [Abstract][Full Text] [Related]
20. Plants as bio-indicators of subsurface conditions: impact of groundwater level on BTEX concentrations in trees. Wilson J; Bartz R; Limmer M; Burken J Int J Phytoremediation; 2013; 15(3):257-67. PubMed ID: 23488011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]