BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28126420)

  • 1. Respiratory effort from the photoplethysmogram.
    Addison PS
    Med Eng Phys; 2017 Mar; 41():9-18. PubMed ID: 28126420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory modulations in the photoplethysmogram (DPOP) as a measure of respiratory effort.
    Addison PS
    J Clin Monit Comput; 2016 Oct; 30(5):595-602. PubMed ID: 26377021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients.
    Alian AA; Atteya G; Gaal D; Golembeski T; Smith BG; Dai F; Silverman DG; Shelley K
    Anesth Analg; 2016 Aug; 123(2):346-56. PubMed ID: 27284998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiration signals from photoplethysmography.
    Nilsson LM
    Anesth Analg; 2013 Oct; 117(4):859-865. PubMed ID: 23449854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation.
    Chon KH; Dash S; Ju K
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2054-63. PubMed ID: 19369147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On better estimating and normalizing the relationship between clinical parameters: comparing respiratory modulations in the photoplethysmogram and blood pressure signal (DPOP versus PPV).
    Addison PS; Wang R; Uribe AA; Bergese SD
    Comput Math Methods Med; 2015; 2015():576340. PubMed ID: 25691912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automated algorithm for determining respiratory rate by photoplethysmogram in children.
    Leonard PA; Clifton D; Addison PS; Watson JN; Beattie T
    Acta Paediatr; 2006 Sep; 95(9):1124-8. PubMed ID: 16938761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of respiratory rate from the photoplethysmogram in chest clinic patients.
    Clifton D; Douglas JG; Addison PS; Watson JN
    J Clin Monit Comput; 2007 Feb; 21(1):55-61. PubMed ID: 17131084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicenter Study Validating Accuracy of a Continuous Respiratory Rate Measurement Derived From Pulse Oximetry: A Comparison With Capnography.
    Bergese SD; Mestek ML; Kelley SD; McIntyre R; Uribe AA; Sethi R; Watson JN; Addison PS
    Anesth Analg; 2017 Apr; 124(4):1153-1159. PubMed ID: 28099286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of respiratory rate from ECG, photoplethysmogram, and piezoelectric pulse transducer signals: a comparative study of time-frequency methods.
    Dash S; Shelley KH; Silverman DG; Chon KH
    IEEE Trans Biomed Eng; 2010 May; 57(5):1099-107. PubMed ID: 20659821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of respiratory rate on the variability of blood volume pulse characteristics.
    Selvaraj N; Jaryal AK; Santhosh J; Deepak KK; Anand S
    J Med Eng Technol; 2009; 33(5):370-5. PubMed ID: 19440917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully automated algorithm for the determination of respiratory rate from the photoplethysmogram.
    Leonard PA; Douglas JG; Grubb NR; Clifton D; Addison PS; Watson JN
    J Clin Monit Comput; 2006 Feb; 20(1):33-6. PubMed ID: 16532280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of joint time frequency analysis to quantify the effect of ventilation on the pulse oximeter waveform.
    Shelley KH; Awad AA; Stout RG; Silverman DG
    J Clin Monit Comput; 2006 Apr; 20(2):81-7. PubMed ID: 16779621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoplethysmography.
    Alian AA; Shelley KH
    Best Pract Res Clin Anaesthesiol; 2014 Dec; 28(4):395-406. PubMed ID: 25480769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algorithm for the detection of individual breaths from the pulse oximeter waveform.
    Leonard P; Grubb NR; Addison PS; Clifton D; Watson JN
    J Clin Monit Comput; 2004 Dec; 18(5-6):309-12. PubMed ID: 15957620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP).
    Addison PS; Wang R; Uribe AA; Bergese SD
    J Clin Monit Comput; 2015 Jun; 29(3):363-72. PubMed ID: 25209132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proof of concept non-invasive estimation of peripheral venous oxygen saturation.
    Khan M; Pretty CG; Amies AC; Balmer J; Banna HE; Shaw GM; Geoffrey Chase J
    Biomed Eng Online; 2017 May; 16(1):60. PubMed ID: 28526082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach using time-frequency analysis of pulse-oximeter data to detect progressive hypovolemia in spontaneously breathing healthy subjects.
    Selvaraj N; Shelley KH; Silverman DG; Stachenfeld N; Galante N; Florian JP; Mendelson Y; Chon K
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21518656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse wave transit time for monitoring respiration rate.
    Johansson A; Ahlstrom C; Lanne T; Ask P
    Med Biol Eng Comput; 2006 Jun; 44(6):471-8. PubMed ID: 16937198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.