These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28126645)

  • 21. [Corrosion property and oxide film of dental casting alloys before and after porcelain firing].
    Ma Q; Wu FM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2011 Mar; 46(3):172-6. PubMed ID: 21575441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review on manufacturing processes of cobalt-chromium alloy implants and its impact on corrosion resistance and biocompatibility.
    Mani G; Porter D; Collins S; Schatz T; Ornberg A; Shulfer R
    J Biomed Mater Res B Appl Biomater; 2024 Jun; 112(6):e35431. PubMed ID: 38817036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical and microstructural study of oxide films formed electrochemically at microcrystalline Al-Fe-V-Si alloys.
    Thomas SC; Birss VI; Steele D; Tessier D
    Microsc Res Tech; 1995 Jul; 31(4):285-92. PubMed ID: 7549001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vitamin-C delivery from CoCr alloy surfaces using polymer-free and polymer-based platforms for cardiovascular stent applications.
    Thiruppathi E; Mani G
    Langmuir; 2014 Jun; 30(21):6237-49. PubMed ID: 24832897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.
    Kannan MB; Raman RK
    Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential and frequency effects on fretting corrosion of Ti6Al4V and CoCrMo surfaces.
    Swaminathan V; Gilbert JL
    J Biomed Mater Res A; 2013 Sep; 101(9):2602-12. PubMed ID: 23404905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Passive films on metallic biomaterials under simulated physiological conditions.
    Pound BG
    J Biomed Mater Res A; 2014 May; 102(5):1595-604. PubMed ID: 23666913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution.
    Dalmau A; Guiñón Pina V; Devesa F; Amigó V; Igual Muñoz A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():55-62. PubMed ID: 25579896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing.
    Qiu J; Yu WQ; Zhang FQ; Smales RJ; Zhang YL; Lu CH
    Eur J Oral Sci; 2011 Feb; 119(1):93-101. PubMed ID: 21244518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corrosion of Mg alloy AZ91D in the presence of living cells.
    Seuss F; Seuss S; Turhan MC; Fabry B; Virtanen S
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):276-81. PubMed ID: 21714090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.
    Hieda J; Niinomi M; Nakai M; Cho K
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():1-7. PubMed ID: 26046260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.
    Valero-Vidal C; Casabán-Julián L; Herraiz-Cardona I; Igual-Muñoz A
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4667-76. PubMed ID: 24094174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical characterization of cobalt-based alloys using the mini-cell system.
    Nascimento ML; Mueller WD; Carvalho AC; Tomás H
    Dent Mater; 2007 Mar; 23(3):369-73. PubMed ID: 16580719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy.
    Efthimiadis J; Neil WC; Bunter A; Howlett PC; Hinton BR; MacFarlane DR; Forsyth M
    ACS Appl Mater Interfaces; 2010 May; 2(5):1317-23. PubMed ID: 20433137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corrosion analysis of NiCu and PdCo thermal seed alloys used as interstitial hyperthermia implants.
    Paulus JA; Parida GR; Tucker RD; Park JB
    Biomaterials; 1997 Dec; 18(24):1609-14. PubMed ID: 9613808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface characteristics and corrosion properties of selective laser melted Co-Cr dental alloy after porcelain firing.
    Xin XZ; Chen J; Xiang N; Gong Y; Wei B
    Dent Mater; 2014 Mar; 30(3):263-70. PubMed ID: 24388219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elemental release from CoCr and NiCr alloys containing palladium.
    Beck KA; Sarantopoulos DM; Kawashima I; Berzins DW
    J Prosthodont; 2012 Feb; 21(2):88-93. PubMed ID: 22380645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of x-ray photoelectron spectroscopy and cyclic polarization to evaluate the corrosion behavior of six nickel-chromium alloys before and after porcelain-fused-to-metal firing.
    Roach MD; Wolan JT; Parsell DE; Bumgardner JD
    J Prosthet Dent; 2000 Dec; 84(6):623-34. PubMed ID: 11125349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of porous coating processing on the corrosion behavior of cast Co-Cr-Mo surgical implant alloys.
    Jacobs JJ; Latanision RM; Rose RM; Veeck SJ
    J Orthop Res; 1990 Nov; 8(6):874-82. PubMed ID: 2213344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material.
    Shabalovskaya SA
    Biomed Mater Eng; 2002; 12(1):69-109. PubMed ID: 11847410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.