BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 28126744)

  • 1. A Gustatory Neural Circuit of
    Wang L; Sato H; Satoh Y; Tomioka M; Kunitomo H; Iino Y
    J Neurosci; 2017 Feb; 37(8):2097-2111. PubMed ID: 28126744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans.
    Adachi T; Kunitomo H; Tomioka M; Ohno H; Okochi Y; Mori I; Iino Y
    Genetics; 2010 Dec; 186(4):1309-19. PubMed ID: 20837997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic regulation of salt and sugar chemotaxis plasticity by a single chemosensory neuron in Caenorhabditis elegans.
    Tomioka M; Umemura Y; Ueoka Y; Chin R; Katae K; Uchiyama C; Ike Y; Iino Y
    PLoS Genet; 2023 Sep; 19(9):e1010637. PubMed ID: 37669262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
    Kunitomo H; Sato H; Iwata R; Satoh Y; Ohno H; Yamada K; Iino Y
    Nat Commun; 2013; 4():2210. PubMed ID: 23887678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans.
    Satoh Y; Sato H; Kunitomo H; Fei X; Hashimoto K; Iino Y
    J Neurosci; 2014 Nov; 34(47):15631-7. PubMed ID: 25411491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans.
    Iino Y; Yoshida K
    J Neurosci; 2009 Apr; 29(17):5370-80. PubMed ID: 19403805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple sensory neurons mediate starvation-dependent aversive navigation in
    Jang MS; Toyoshima Y; Tomioka M; Kunitomo H; Iino Y
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18673-18683. PubMed ID: 31455735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different modes of stimuli delivery elicit changes in glutamate driven, experience-dependent interneuron response in C. elegans.
    Mabardi L; Sato H; Toyoshima Y; Iino Y; Kunitomo H
    Neurosci Res; 2023 Jan; 186():33-42. PubMed ID: 36252701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans.
    Oda S; Tomioka M; Iino Y
    J Neurophysiol; 2011 Jul; 106(1):301-8. PubMed ID: 21525368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of chemotaxis and associative learning in C. elegans.
    Appleby PA
    Biol Cybern; 2012 Sep; 106(6-7):373-87. PubMed ID: 22824944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity.
    Fenk LA; de Bono M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3525-34. PubMed ID: 26100886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis.
    Suzuki H; Thiele TR; Faumont S; Ezcurra M; Lockery SR; Schafer WR
    Nature; 2008 Jul; 454(7200):114-7. PubMed ID: 18596810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral Forgetting of Olfactory Learning Is Mediated by Interneuron-Regulated Network Plasticity in
    Teo JH; Kurokawa I; Onishi Y; Sato N; Kitazono T; Tokunaga T; Fujiwara M; Ishihara T
    eNeuro; 2022; 9(4):. PubMed ID: 35977825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding a neural circuit controlling global animal state in C. elegans.
    Laurent P; Soltesz Z; Nelson GM; Chen C; Arellano-Carbajal F; Levy E; de Bono M
    Elife; 2015 Mar; 4():. PubMed ID: 25760081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-dependent preference of thermosensation and chemosensation during simultaneous presentation assay in Caenorhabditis elegans.
    Adachi R; Osada H; Shingai R
    BMC Neurosci; 2008 Nov; 9():106. PubMed ID: 18976490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals.
    Hino T; Hirai S; Ishihara T; Fujiwara M
    Genes Cells; 2021 Jun; 26(6):411-425. PubMed ID: 33817914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemotaxis behavior toward an odor is regulated by constant sodium chloride stimulus in Caenorhabditis elegans.
    Shingai R; Ichijo H; Wakabayashi T; Tanaka H; Ogurusu T
    Neurosci Res; 2014; 81-82():51-4. PubMed ID: 24561276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in
    Bhardwaj A; Thapliyal S; Dahiya Y; Babu K
    J Neurosci; 2018 May; 38(20):4641-4654. PubMed ID: 29712787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neural network for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal differentiation.
    Thiele TR; Faumont S; Lockery SR
    J Neurosci; 2009 Sep; 29(38):11904-11. PubMed ID: 19776276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural model generating klinotaxis behavior accompanied by a random walk based on C. elegans connectome.
    Chen M; Feng D; Su H; Su T; Wang M
    Sci Rep; 2022 Feb; 12(1):3043. PubMed ID: 35197494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.