BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 28126757)

  • 1. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes.
    Chen SJ; Wu X; Wadas B; Oh JH; Varshavsky A
    Science; 2017 Jan; 355(6323):. PubMed ID: 28126757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of Substrates and Components of the Pro/N-Degron Pathway.
    Chen SJ; Melnykov A; Varshavsky A
    Biochemistry; 2020 Feb; 59(4):582-593. PubMed ID: 31895557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of gluconeogenic enzymes; Icl1, Fbp1, and Mdh2 by Gid4 ligase: A molecular docking study.
    Elfiky AA; Ismail AM; Elshemey WM
    J Mol Recognit; 2020 May; 33(5):e2831. PubMed ID: 31863529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of yeast Gid10 in complex with Pro/N-degron.
    Shin JS; Park SH; Kim L; Heo J; Song HK
    Biochem Biophys Res Commun; 2021 Dec; 582():86-92. PubMed ID: 34695755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gid10 as an alternative N-recognin of the Pro/N-degron pathway.
    Melnykov A; Chen SJ; Varshavsky A
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15914-15923. PubMed ID: 31337681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway.
    Dong C; Chen SJ; Melnykov A; Weirich S; Sun K; Jeltsch A; Varshavsky A; Min J
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14158-14167. PubMed ID: 32513738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Gid ubiquitin ligase recognition subunit Gid4.
    Menssen R; Bui K; Wolf DH
    FEBS Lett; 2018 Oct; 592(19):3286-3294. PubMed ID: 30136317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae.
    Hämmerle M; Bauer J; Rose M; Szallies A; Thumm M; Düsterhus S; Mecke D; Entian KD; Wolf DH
    J Biol Chem; 1998 Sep; 273(39):25000-5. PubMed ID: 9737955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway.
    Chen SJ; Kim L; Song HK; Varshavsky A
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34663735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mutations of GID protein-coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae.
    Negoro H; Matsumura K; Matsuda F; Shimizu H; Hata Y; Ishida H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4971-4983. PubMed ID: 32248437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism.
    Santt O; Pfirrmann T; Braun B; Juretschke J; Kimmig P; Scheel H; Hofmann K; Thumm M; Wolf DH
    Mol Biol Cell; 2008 Aug; 19(8):3323-33. PubMed ID: 18508925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events.
    Hung GC; Brown CR; Wolfe AB; Liu J; Chiang HL
    J Biol Chem; 2004 Nov; 279(47):49138-50. PubMed ID: 15358789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme.
    Sherpa D; Chrustowicz J; Qiao S; Langlois CR; Hehl LA; Gottemukkala KV; Hansen FM; Karayel O; von Gronau S; Prabu JR; Mann M; Alpi AF; Schulman BA
    Mol Cell; 2021 Jun; 81(11):2445-2459.e13. PubMed ID: 33905682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway.
    Alibhoy AA; Giardina BJ; Dunton DD; Chiang HL
    Autophagy; 2012 Jan; 8(1):29-46. PubMed ID: 22082961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of the gluconeogenic enzyme, Pck1, via the Gid4 E3 ligase: An in silico perspective.
    Ismail AM; Elfiky AA; Elshemey WM
    J Mol Recognit; 2020 Mar; 33(3):e2821. PubMed ID: 31883179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the topology of the Gid complex, the E3 ubiquitin ligase involved in catabolite-induced degradation of gluconeogenic enzymes.
    Menssen R; Schweiggert J; Schreiner J; Kusevic D; Reuther J; Braun B; Wolf DH
    J Biol Chem; 2012 Jul; 287(30):25602-14. PubMed ID: 22645139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Hsp70 chaperone Ssa1 is essential for catabolite induced degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase.
    Juretschke J; Menssen R; Sickmann A; Wolf DH
    Biochem Biophys Res Commun; 2010 Jul; 397(3):447-52. PubMed ID: 20513352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes.
    Gibson N; McAlister-Henn L
    J Biol Chem; 2003 Jul; 278(28):25628-36. PubMed ID: 12730240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reference-based protein degradation assay without global translation inhibitors.
    Oh JH; Chen SJ; Varshavsky A
    J Biol Chem; 2017 Dec; 292(52):21457-21465. PubMed ID: 29122887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vps34p is required for the decline of extracellular fructose-1,6-bisphosphatase in the vacuole import and degradation pathway.
    Alibhoy AA; Giardina BJ; Dunton DD; Chiang HL
    J Biol Chem; 2012 Sep; 287(39):33080-93. PubMed ID: 22833678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.