These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28126922)

  • 1. RNA binding and chaperone activity of the E. coli cold-shock protein CspA.
    Rennella E; Sára T; Juen M; Wunderlich C; Imbert L; Solyom Z; Favier A; Ayala I; Weinhäupl K; Schanda P; Konrat R; Kreutz C; Brutscher B
    Nucleic Acids Res; 2017 Apr; 45(7):4255-4268. PubMed ID: 28126922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteins That Chaperone RNA Regulation.
    Woodson SA; Panja S; Santiago-Frangos A
    Microbiol Spectr; 2018 Jul; 6(4):. PubMed ID: 30051798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of RNA chaperone activity using an Escherichia coli mutant.
    Kim MH; Imai R
    Methods Mol Biol; 2015; 1259():117-23. PubMed ID: 25579583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and interaction of Corynebacterium pseudotuberculosis cold shock protein A with Y-box single-stranded DNA fragment.
    Caruso IP; Panwalkar V; Coronado MA; Dingley AJ; Cornélio ML; Willbold D; Arni RK; Eberle RJ
    FEBS J; 2018 Jan; 285(2):372-390. PubMed ID: 29197185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of two DNA helicases UvrD and DinG as suppressors for lethality caused by mutant cspA mRNAs.
    Hwang J; Lee K; Phadtare S; Inouye M
    J Mol Microbiol Biotechnol; 2012; 22(3):135-46. PubMed ID: 22832783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
    Feng W; Tejero R; Zimmerman DE; Inouye M; Montelione GT
    Biochemistry; 1998 Aug; 37(31):10881-96. PubMed ID: 9692981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of nucleic acid chaperone activity of CspA and its homologues.
    Phadtare S; Zhu L; Uemori T; Mukai H; Kato I; Inouye M
    J Mol Microbiol Biotechnol; 2009; 17(3):110-7. PubMed ID: 19556744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone.
    Jiang W; Hou Y; Inouye M
    J Biol Chem; 1997 Jan; 272(1):196-202. PubMed ID: 8995247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traversing DNA-Protein Interactions Between Mesophilic and Thermophilic Bacteria: Implications from Their Cold Shock Response.
    Roy A; Ray S
    Mol Biotechnol; 2024 Apr; 66(4):824-844. PubMed ID: 36905463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyr51: Key Determinant of the Low Thermostability of the Colwellia psychrerythraea Cold-Shock Protein.
    Lee Y; Kwak C; Jeong KW; Durai P; Ryu KS; Kim EH; Cheong C; Ahn HC; Kim HJ; Kim Y
    Biochemistry; 2018 Jul; 57(26):3625-3640. PubMed ID: 29737840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Janus chaperones: assistance of both RNA- and protein-folding by ribosomal proteins.
    Kovacs D; Rakacs M; Agoston B; Lenkey K; Semrad K; Schroeder R; Tompa P
    FEBS Lett; 2009 Jan; 583(1):88-92. PubMed ID: 19071121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells.
    Phadtare S; Tyagi S; Inouye M; Severinov K
    J Biol Chem; 2002 Nov; 277(48):46706-11. PubMed ID: 12324471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early turn formation and chain collapse drive fast folding of the major cold shock protein CspA of Escherichia coli.
    Vu DM; Brewer SH; Dyer RB
    Biochemistry; 2012 Nov; 51(45):9104-11. PubMed ID: 23098216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleic acid melting by Escherichia coli CspE.
    Phadtare S; Severinov K
    Nucleic Acids Res; 2005; 33(17):5583-90. PubMed ID: 16214801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus.
    Jin B; Jeong KW; Kim Y
    Biochem Biophys Res Commun; 2014 Aug; 451(3):402-7. PubMed ID: 25101648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and dynamic features of cold-shock proteins of Listeria monocytogenes, a psychrophilic bacterium.
    Lee J; Jeong KW; Jin B; Ryu KS; Kim EH; Ahn JH; Kim Y
    Biochemistry; 2013 Apr; 52(14):2492-504. PubMed ID: 23506337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of changes in gene expression due to RNA melting activities of translation initiation factor IF1 and a cold shock protein of the CspA family.
    Phadtare S; Severinov K
    Genes Cells; 2009 Nov; 14(11):1227-39. PubMed ID: 19840122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical properties of cold shock protein A from Mycobacterium tuberculosis.
    D'Auria G; Esposito C; Falcigno L; Calvanese L; Iaccarino E; Ruggiero A; Pedone C; Pedone E; Berisio R
    Biochem Biophys Res Commun; 2010 Nov; 402(4):693-8. PubMed ID: 20977881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures.
    Godin-Roulling A; Schmidpeter PA; Schmid FX; Feller G
    Environ Microbiol; 2015 Jul; 17(7):2407-20. PubMed ID: 25389111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unwinding activity of cold shock proteins and RNA metabolism.
    Phadtare S
    RNA Biol; 2011; 8(3):394-7. PubMed ID: 21445001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.