These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 28127414)
1. Interrelation of Aromaticity and Conductivity of Graphene Dots/Antidots and Related Nanostructures. Zdetsis AD; Economou EN J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(51):29463-29475. PubMed ID: 28127414 [TBL] [Abstract][Full Text] [Related]
2. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls. Nhung Nguyen TT; Power SR; Karakachian H; Starke U; Tegenkamp C ACS Nano; 2023 Oct; 17(20):20345-20352. PubMed ID: 37788294 [TBL] [Abstract][Full Text] [Related]
3. Armchair graphene nanoribbons with giant spin thermoelectric efficiency. Shirdel-Havar M; Farghadan R Phys Chem Chem Phys; 2018 Jun; 20(24):16853-16860. PubMed ID: 29892735 [TBL] [Abstract][Full Text] [Related]
4. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties. Cupo A; Masih Das P; Chien CC; Danda G; Kharche N; Tristant D; Drndić M; Meunier V ACS Nano; 2017 Jul; 11(7):7494-7507. PubMed ID: 28666086 [TBL] [Abstract][Full Text] [Related]
5. Energy gaps in graphene nanoribbons. Son YW; Cohen ML; Louie SG Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765 [TBL] [Abstract][Full Text] [Related]
6. Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons. Kuo DMT; Chang YC Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234484 [TBL] [Abstract][Full Text] [Related]
7. Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays. Zhang YT; Li QM; Li YC; Zhang YY; Zhai F J Phys Condens Matter; 2010 Aug; 22(31):315304. PubMed ID: 21399360 [TBL] [Abstract][Full Text] [Related]
8. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Ritter KA; Lyding JW Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032 [TBL] [Abstract][Full Text] [Related]
9. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
10. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Hu J; Ruan X; Chen YP Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898 [TBL] [Abstract][Full Text] [Related]
11. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Ruffieux P; Wang S; Yang B; Sánchez-Sánchez C; Liu J; Dienel T; Talirz L; Shinde P; Pignedoli CA; Passerone D; Dumslaff T; Feng X; Müllen K; Fasel R Nature; 2016 Mar; 531(7595):489-92. PubMed ID: 27008967 [TBL] [Abstract][Full Text] [Related]
12. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies. Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375 [TBL] [Abstract][Full Text] [Related]
13. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation. Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877 [TBL] [Abstract][Full Text] [Related]
14. Generating pure spin current with spin-dependent Seebeck effect in ferromagnetic zigzag graphene nanoribbons. Zhou Y; Zheng X J Phys Condens Matter; 2019 Aug; 31(31):315301. PubMed ID: 31022711 [TBL] [Abstract][Full Text] [Related]
15. Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots. Saleem Y; Najera Baldo L; Delgado A; Szulakowska L; Hawrylak P J Phys Condens Matter; 2019 Jul; 31(30):305503. PubMed ID: 30812024 [TBL] [Abstract][Full Text] [Related]
16. Electronic and optical properties of graphene antidot lattices: comparison of Dirac and tight-binding models. Brun SJ; Thomsen MR; Pedersen TG J Phys Condens Matter; 2014 Jul; 26(26):265301. PubMed ID: 24911836 [TBL] [Abstract][Full Text] [Related]
17. Electronic Properties of Zigzag Graphene Nanoribbons Studied by TAO-DFT. Wu CS; Chai JD J Chem Theory Comput; 2015 May; 11(5):2003-11. PubMed ID: 26894252 [TBL] [Abstract][Full Text] [Related]
18. Dirac model of electronic transport in graphene antidot barriers. Thomsen MR; Brun SJ; Pedersen TG J Phys Condens Matter; 2014 Aug; 26(33):335301. PubMed ID: 25071080 [TBL] [Abstract][Full Text] [Related]
19. Atomically perfect torn graphene edges and their reversible reconstruction. Kim K; Coh S; Kisielowski C; Crommie MF; Louie SG; Cohen ML; Zettl A Nat Commun; 2013; 4():2723. PubMed ID: 24177166 [TBL] [Abstract][Full Text] [Related]
20. Bandgaps of atomically precise graphene nanoribbons and Occam's razor. Zdetsis AD Phys Chem Chem Phys; 2022 May; 24(17):10334-10345. PubMed ID: 35438110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]