These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28127720)

  • 1. DEM Modelling of Granule Rearrangement and Fracture Behaviours During a Closed-Die Compaction.
    Furukawa R; Kadota K; Noguchi T; Shimosaka A; Shirakawa Y
    AAPS PharmSciTech; 2017 Aug; 18(6):2368-2377. PubMed ID: 28127720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs.
    Khomane KS; Bansal AK
    Int J Pharm; 2014 Sep; 472(1-2):288-95. PubMed ID: 24971694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.
    Wu SJ; Sun C
    J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dry granulation and compression of spray-dried plant extracts.
    Soares LA; González Ortega G; Petrovick PR; Schmidt PC
    AAPS PharmSciTech; 2005 Oct; 6(3):E359-66. PubMed ID: 16353993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J; Alderborn G
    J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of roll-compaction and milling conditions on granules and tablet properties.
    Perez-Gandarillas L; Perez-Gago A; Mazor A; Kleinebudde P; Lecoq O; Michrafy A
    Eur J Pharm Biopharm; 2016 Sep; 106():38-49. PubMed ID: 27237776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2015 Dec; 104(12):4339-4344. PubMed ID: 26460539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressibility and tablet forming ability of bimodal granule mixtures: Experiments and DEM simulations.
    Nordström J; Alderborn G; Frenning G
    Int J Pharm; 2018 Apr; 540(1-2):120-131. PubMed ID: 29425765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The improved compaction properties of mannitol after a moisture-induced polymorphic transition.
    Yoshinari T; Forbes RT; York P; Kawashima Y
    Int J Pharm; 2003 Jun; 258(1-2):121-31. PubMed ID: 12753759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression of lactose, glucose and mannitol granules.
    Juppo AM; Kervinen L; Yliruusi J; Kristoffersson E
    J Pharm Pharmacol; 1995 Jul; 47(7):543-9. PubMed ID: 8568618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Modeling of Drying of Pharmaceutical Wet Granules in a Fluidized Bed Dryer Using Coupled CFD-DEM Approach.
    Aziz H; Ahsan SN; De Simone G; Gao Y; Chaudhuri B
    AAPS PharmSciTech; 2022 Jan; 23(1):59. PubMed ID: 35059893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compaction behavior of roller compacted ibuprofen.
    Patel S; Kaushal AM; Bansal AK
    Eur J Pharm Biopharm; 2008 Jun; 69(2):743-9. PubMed ID: 18280716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compaction behavior and deformation mechanism of directly compressible textured mannitol in a rotary tablet press simulator.
    Tarlier N; Soulairol I; Bataille B; Baylac G; Ravel P; Nofrerias I; Lefèvre P; Sharkawi T
    Int J Pharm; 2015 Nov; 495(1):410-419. PubMed ID: 26363108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full Out-of-Die Compressibility and Compactibility Profiles From Two Tablets.
    Katz JM; Buckner IS
    J Pharm Sci; 2017 Mar; 106(3):843-849. PubMed ID: 27938894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression.
    Farber L; Hapgood KP; Michaels JN; Fu XY; Meyer R; Johnson MA; Li F
    Int J Pharm; 2008 Jan; 346(1-2):17-24. PubMed ID: 17689211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lamination of biconvex tablets: Numerical and experimental study.
    Mazel V; Diarra H; Malvestio J; Tchoreloff P
    Int J Pharm; 2018 May; 542(1-2):66-71. PubMed ID: 29526618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roll compaction of mannitol: compactability study of crystalline and spray-dried grades.
    Wagner CM; Pein M; Breitkreutz J
    Int J Pharm; 2013 Sep; 453(2):416-22. PubMed ID: 23742975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the Influence of Granule Size on Simulation Parameters and Residual Shear Stress Distribution in Tablets by Combining the Finite Element Method into the Design of Experiments.
    Hayashi Y; Kosugi A; Miura T; Takayama K; Onuki Y
    Chem Pharm Bull (Tokyo); 2018; 66(5):541-547. PubMed ID: 29710049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of granule fracture strength as a function of impeller tip speed and granule size for a novel reverse-phase wet granulation process.
    Wade JB; Martin GP; Long DF
    Int J Pharm; 2015 Jul; 488(1-2):95-101. PubMed ID: 25888799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating elastic relaxation effects on the optical properties of functionalised calcium carbonate compacts using optics-based Heckel analysis.
    Bawuah P; Karttunen AP; Markl D; Ridgway C; Korhonen O; Gane P; Zeitler JA; Ketolainen J; Peiponen KE
    Int J Pharm; 2018 Jun; 544(1):278-284. PubMed ID: 29689369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.