These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 28127960)
1. Automatic Reaction Pathway Search via Combined Molecular Dynamics and Coordinate Driving Method. Yang M; Zou J; Wang G; Li S J Phys Chem A; 2017 Feb; 121(6):1351-1361. PubMed ID: 28127960 [TBL] [Abstract][Full Text] [Related]
2. Combined Molecular Dynamics and Coordinate Driving Method for Automatic Reaction Pathway Search of Reactions in Solution. Yang M; Yang L; Wang G; Zhou Y; Xie D; Li S J Chem Theory Comput; 2018 Nov; 14(11):5787-5796. PubMed ID: 30351922 [TBL] [Abstract][Full Text] [Related]
3. Combined molecular dynamics and coordinate driving method for automatically searching complicated reaction pathways. Li G; Li Z; Gao L; Chen S; Wang G; Li S Phys Chem Chem Phys; 2023 Sep; 25(35):23696-23707. PubMed ID: 37610711 [TBL] [Abstract][Full Text] [Related]
4. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation. Polyak I; Benighaus T; Boulanger E; Thiel W J Chem Phys; 2013 Aug; 139(6):064105. PubMed ID: 23947841 [TBL] [Abstract][Full Text] [Related]
5. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related]
6. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis. Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314 [TBL] [Abstract][Full Text] [Related]
7. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525 [TBL] [Abstract][Full Text] [Related]
8. Conformational Preadjustment in Aqueous Claisen Rearrangement Revealed by SITS-QM/MM MD Simulations. Zhang J; Yang YI; Yang L; Gao YQ J Phys Chem B; 2015 Apr; 119(17):5518-30. PubMed ID: 25849201 [TBL] [Abstract][Full Text] [Related]
9. A computational study of regioselectivity in a cyclodextrin-mediated Diels-Alder reaction: revelation of site selectivity and the importance of shallow binding and multiple binding modes. Li WS; Chung WS; Chao I Chemistry; 2003 Feb; 9(4):951-62. PubMed ID: 12584711 [TBL] [Abstract][Full Text] [Related]
10. Collective Reaction Coordinate for Hybrid Quantum and Molecular Mechanics Simulations: A Case Study of the Hydride Transfer in Dihydrofolate Reductase. Doron D; Kohen A; Major DT J Chem Theory Comput; 2012 Jul; 8(7):2484-96. PubMed ID: 26588977 [TBL] [Abstract][Full Text] [Related]
11. Computational Catalysis Using the Artificial Force Induced Reaction Method. Sameera WM; Maeda S; Morokuma K Acc Chem Res; 2016 Apr; 49(4):763-73. PubMed ID: 27023677 [TBL] [Abstract][Full Text] [Related]
12. Geometry optimization based on linear response free energy with quantum mechanical/molecular mechanical method: applications to Menshutkin-type and Claisen rearrangement reactions in aqueous solution. Higashi M; Hayashi S; Kato S J Chem Phys; 2007 Apr; 126(14):144503. PubMed ID: 17444719 [TBL] [Abstract][Full Text] [Related]
13. Macrophomate synthase: QM/MM simulations address the Diels-Alder versus Michael-Aldol reaction mechanism. Guimarães CR; Udier-Blagović M; Jorgensen WL J Am Chem Soc; 2005 Mar; 127(10):3577-88. PubMed ID: 15755179 [TBL] [Abstract][Full Text] [Related]
14. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method. Maeda S; Taketsugu T; Morokuma K J Comput Chem; 2014 Jan; 35(2):166-73. PubMed ID: 24186858 [TBL] [Abstract][Full Text] [Related]
15. Structures in solutions from joint experimental-computational analysis: applications to cyclic molecules and studies of noncovalent interactions. Aliev AE; Mia ZA; Khaneja HS; King FD J Phys Chem A; 2012 Jan; 116(3):1093-109. PubMed ID: 22204632 [TBL] [Abstract][Full Text] [Related]
16. Role of substrate dynamics in protein prenylation reactions. Chakravorty DK; Merz KM Acc Chem Res; 2015 Feb; 48(2):439-48. PubMed ID: 25539152 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces. Faheem M; Heyden A J Chem Theory Comput; 2014 Aug; 10(8):3354-68. PubMed ID: 26588304 [TBL] [Abstract][Full Text] [Related]
18. Potential Energy Surface-Based Automatic Deduction of Conformational Transition Networks and Its Application on Quantum Mechanical Landscapes of d-Glucose Conformers. Satoh H; Oda T; Nakakoji K; Uno T; Tanaka H; Iwata S; Ohno K J Chem Theory Comput; 2016 Nov; 12(11):5293-5308. PubMed ID: 27673598 [TBL] [Abstract][Full Text] [Related]
19. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates. Li S; Li W; Ma J Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495 [TBL] [Abstract][Full Text] [Related]
20. Reaction analysis and visualization of ReaxFF molecular dynamics simulations. Liu J; Li X; Guo L; Zheng M; Han J; Yuan X; Nie F; Liu X J Mol Graph Model; 2014 Sep; 53():13-22. PubMed ID: 25064439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]