BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 28127962)

  • 21. FPGA implementation of principal component regression (PCR) for real-time differentiation of dopamine from interferents.
    Bozorgzadeh B; Covey DP; Garris PA; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5151-4. PubMed ID: 26737451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry.
    Roberts JG; Hamilton KL; Sombers LA
    Analyst; 2011 Sep; 136(17):3550-6. PubMed ID: 21727955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time processing of fast-scan cyclic voltammetry (FSCV) data using a field-programmable gate array (FPGA).
    Bozorgzadeh B; Covey DP; Heidenreich BA; Garris PA; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2036-9. PubMed ID: 25570384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Fast-Scan Cyclic Voltammetric Electrodes Using Paraffin as an Effective Sealant with In Vitro and In Vivo Applications.
    Ramsson ES; Cholger D; Dionise A; Poirier N; Andrus A; Curtiss R
    PLoS One; 2015; 10(10):e0141340. PubMed ID: 26505195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays.
    Zhang B; Heien ML; Santillo MF; Mellander L; Ewing AG
    Anal Chem; 2011 Jan; 83(2):571-7. PubMed ID: 21190375
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Xu C; Wu F; Yu P; Mao L
    ACS Sens; 2019 Dec; 4(12):3102-3118. PubMed ID: 31718157
    [No Abstract]   [Full Text] [Related]  

  • 27. Mitigating the Effects of Electrode Biofouling-Induced Impedance for Improved Long-Term Electrochemical Measurements In Vivo.
    Seaton BT; Hill DF; Cowen SL; Heien ML
    Anal Chem; 2020 May; 92(9):6334-6340. PubMed ID: 32298105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Moving Fast-Scan Cyclic Voltammetry toward FDA Compliance with Capacitive Decoupling Patient Protection.
    Siegenthaler JR; Gushiken BC; Hill DF; Cowen SL; Heien ML
    ACS Sens; 2020 Jul; 5(7):1890-1899. PubMed ID: 32580544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new design of carbon fiber microelectrode for in vivo voltammetry using fused silica.
    Swiergiel AH; Palamarchouk VS; Dunn AJ
    J Neurosci Methods; 1997 Apr; 73(1):29-33. PubMed ID: 9130675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Background Signal as an in Situ Predictor of Dopamine Oxidation Potential: Improving Interpretation of Fast-Scan Cyclic Voltammetry Data.
    Meunier CJ; Roberts JG; McCarty GS; Sombers LA
    ACS Chem Neurosci; 2017 Feb; 8(2):411-419. PubMed ID: 28044445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fundamentals of fast-scan cyclic voltammetry for dopamine detection.
    Venton BJ; Cao Q
    Analyst; 2020 Feb; 145(4):1158-1168. PubMed ID: 31922176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Presynaptic dopamine dynamics in striatal brain slices with fast-scan cyclic voltammetry.
    Maina FK; Khalid M; Apawu AK; Mathews TA
    J Vis Exp; 2012 Jan; (59):. PubMed ID: 22270035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements.
    Nicolai EN; Michelson NJ; Settell ML; Hara SA; Trevathan JK; Asp AJ; Stocking KC; Lujan JL; Kozai TDY; Ludwig KA
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurochemostat: A Neural Interface SoC With Integrated Chemometrics for Closed-Loop Regulation of Brain Dopamine.
    Bozorgzadeh B; Schuweiler DR; Bobak MJ; Garris PA; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):654-67. PubMed ID: 26390501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time dopamine measurement in awake monkeys.
    Schluter EW; Mitz AR; Cheer JF; Averbeck BB
    PLoS One; 2014; 9(6):e98692. PubMed ID: 24921937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrodeposition of dopamine onto carbon fiber microelectrodes to enhance the detection of Cu
    Manring N; Ahmed MMN; Smeltz JL; Pathirathna P
    Anal Bioanal Chem; 2023 Jul; 415(18):4289-4296. PubMed ID: 36595035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-Printed Carbon Electrodes for Neurotransmitter Detection.
    Yang C; Cao Q; Puthongkham P; Lee ST; Ganesana M; Lavrik NV; Venton BJ
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14255-14259. PubMed ID: 30207021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry.
    Zachek MK; Takmakov P; Moody B; Wightman RM; McCarty GS
    Anal Chem; 2009 Aug; 81(15):6258-65. PubMed ID: 19552423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry.
    Castagnola E; Thongpang S; Hirabayashi M; Nava G; Nimbalkar S; Nguyen T; Lara S; Oyawale A; Bunnell J; Moritz C; Kassegne S
    Analyst; 2021 Jun; 146(12):3955-3970. PubMed ID: 33988202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous fMRI and fast-scan cyclic voltammetry bridges evoked oxygen and neurotransmitter dynamics across spatiotemporal scales.
    Walton LR; Verber M; Lee SH; Chao TH; Wightman RM; Shih YI
    Neuroimage; 2021 Dec; 244():118634. PubMed ID: 34624504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.