BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28128214)

  • 1. Promising gene delivery system based on polyethylenimine-modified silica nanoparticles.
    Babaei M; Eshghi H; Abnous K; Rahimizadeh M; Ramezani M
    Cancer Gene Ther; 2017 Apr; 24(4):156-164. PubMed ID: 28128214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles.
    Zarei H; Kazemi Oskuee R; Hanafi-Bojd MY; Gholami L; Ansari L; Malaekeh-Nikouei B
    Pharm Dev Technol; 2019 Jan; 24(1):127-132. PubMed ID: 29357725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silica nanoparticles and polyethyleneimine (PEI)-mediated functionalization: a new method of PEI covalent attachment for siRNA delivery applications.
    Buchman YK; Lellouche E; Zigdon S; Bechor M; Michaeli S; Lellouche JP
    Bioconjug Chem; 2013 Dec; 24(12):2076-87. PubMed ID: 24180511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene delivery to neuroblastoma cells by poly (l-lysine)-grafted low molecular weight polyethylenimine copolymers.
    Askarian S; Abnous K; Darroudi M; Oskuee RK; Ramezani M
    Biologicals; 2016 Jul; 44(4):212-218. PubMed ID: 27118207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique Surface Modification of Silica Nanoparticles with Polyethylenimine (PEI) for siRNA Delivery Using Cerium Cation Coordination Chemistry.
    Kapilov-Buchman Y; Lellouche E; Michaeli S; Lellouche JP
    Bioconjug Chem; 2015 May; 26(5):880-9. PubMed ID: 25830668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterocyclic amine-modified polyethylenimine as gene carriers for transfection of mammalian cells.
    Salmasi Z; Shier WT; Hashemi M; Mahdipour E; Parhiz H; Abnous K; Ramezani M
    Eur J Pharm Biopharm; 2015 Oct; 96():76-88. PubMed ID: 26209125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF receptor-mediated gene delivery using ligands coupled to polyethylenimine.
    Li D; Yu H; Huang H; Shen F; Wu X; Li J; Wang J; Cao X; Wang Q; Tang G
    J Biomater Appl; 2007 Sep; 22(2):163-80. PubMed ID: 17255154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery.
    Du X; Shi B; Tang Y; Dai S; Qiao SZ
    Biomaterials; 2014 Jul; 35(21):5580-90. PubMed ID: 24726748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyethylenimine-based amphiphilic core-shell nanoparticles: study of gene delivery and intracellular trafficking.
    Siu YS; Li L; Leung MF; Lee KL; Li P
    Biointerphases; 2012 Dec; 7(1-4):16. PubMed ID: 22589059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection.
    Teo PY; Yang C; Hedrick JL; Engler AC; Coady DJ; Ghaem-Maghami S; George AJ; Yang YY
    Biomaterials; 2013 Oct; 34(32):7971-9. PubMed ID: 23880339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lyophilization enabled disentanglement of polyethylenimine on rambutan-like silica nanoparticles for enhanced plasmid DNA delivery.
    Geng J; Song H; Gao F; Kong Y; Fu J; Luo J; Yang Y; Yu C
    J Mater Chem B; 2020 Jun; 8(21):4593-4600. PubMed ID: 32391536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C- versus N-terminally linked melittin-polyethylenimine conjugates: the site of linkage strongly influences activity of DNA polyplexes.
    Boeckle S; Wagner E; Ogris M
    J Gene Med; 2005 Oct; 7(10):1335-47. PubMed ID: 15945120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile Friedel-Crafts acylation for the synthesis of polyethylenimine-grafted multi-walled carbon nanotubes as efficient gene delivery vectors.
    Nia AH; Amini A; Taghavi S; Eshghi H; Abnous K; Ramezani M
    Int J Pharm; 2016 Apr; 502(1-2):125-37. PubMed ID: 26906459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethylenimine.
    Liu Z; Zheng M; Meng F; Zhong Z
    Biomaterials; 2011 Dec; 32(34):9109-19. PubMed ID: 21890198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the effectiveness of cationic polymers poly-L-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC).
    Farrell LL; Pepin J; Kucharski C; Lin X; Xu Z; Uludag H
    Eur J Pharm Biopharm; 2007 Mar; 65(3):388-97. PubMed ID: 17240127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel PEI/Poly-γ-Gutamic Acid Nanoparticles for High Efficient siRNA and Plasmid DNA Co-Delivery.
    Peng SF; Hsu HK; Lin CC; Cheng YM; Hsu KH
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28054985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation, characterization, and transfection efficiency of low molecular weight polyethylenimine-based nanoparticles for delivery of the plasmid encoding CD200 gene.
    Nouri F; Sadeghpour H; Heidari R; Dehshahri A
    Int J Nanomedicine; 2017; 12():5557-5569. PubMed ID: 28831252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes.
    Singh B; Maharjan S; Park TE; Jiang T; Kang SK; Choi YJ; Cho CS
    Macromol Biosci; 2015 May; 15(5):622-35. PubMed ID: 25581293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione-sensitive RGD-poly(ethylene glycol)-SS-polyethylenimine for intracranial glioblastoma targeted gene delivery.
    Lei Y; Wang J; Xie C; Wagner E; Lu W; Li Y; Wei X; Dong J; Liu M
    J Gene Med; 2013; 15(8-9):291-305. PubMed ID: 24038955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of (Dex-HMDI)-g-PEIs as effective and low cytotoxic nonviral gene vectors.
    Sun YX; Xiao W; Cheng SX; Zhang XZ; Zhuo RX
    J Control Release; 2008 Jun; 128(2):171-8. PubMed ID: 18439698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.