These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 28128236)

  • 1. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer.
    Fischer-Gödde M; Kleine T
    Nature; 2017 Jan; 541(7638):525-527. PubMed ID: 28128236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruthenium isotope vestige of Earth's pre-late-veneer mantle preserved in Archaean rocks.
    Fischer-Gödde M; Elfers BM; Münker C; Szilas K; Maier WD; Messling N; Morishita T; Van Kranendonk M; Smithies H
    Nature; 2020 Mar; 579(7798):240-244. PubMed ID: 32161386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer.
    Wang Z; Becker H
    Nature; 2013 Jul; 499(7458):328-31. PubMed ID: 23868263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Earth's water may have been inherited from material similar to enstatite chondrite meteorites.
    Piani L; Marrocchi Y; Rigaudier T; Vacher LG; Thomassin D; Marty B
    Science; 2020 Aug; 369(6507):1110-1113. PubMed ID: 32855337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ruthenium isotopic composition of the oceanic mantle.
    Bermingham KR; Walker RJ
    Earth Planet Sci Lett; 2017 Sep; 474():466-473. PubMed ID: 30956285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenium isotopes as tracers of a late volatile contribution to Earth from the outer Solar System.
    Varas-Reus MI; König S; Yierpan A; Lorand JP; Schoenberg R
    Nat Geosci; 2019 Jul; 12(9):779-782. PubMed ID: 31485262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early solar system. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source.
    Sarafian AR; Nielsen SG; Marschall HR; McCubbin FM; Monteleone BD
    Science; 2014 Oct; 346(6209):623-6. PubMed ID: 25359971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites.
    Sharp ZD; Barnes JD; Brearley AJ; Chaussidon M; Fischer TP; Kamenetsky VS
    Nature; 2007 Apr; 446(7139):1062-5. PubMed ID: 17460668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The isotopic nature of the Earth's accreting material through time.
    Dauphas N
    Nature; 2017 Jan; 541(7638):521-524. PubMed ID: 28128239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets.
    Alexander CM; Bowden R; Fogel ML; Howard KT; Herd CD; Nittler LR
    Science; 2012 Aug; 337(6095):721-3. PubMed ID: 22798405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact.
    Grewal DS; Dasgupta R; Sun C; Tsuno K; Costin G
    Sci Adv; 2019 Jan; 5(1):eaau3669. PubMed ID: 30746449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accretion and differentiation of carbon in the early Earth.
    Tingle TN
    Chem Geol; 1998 May; 147(1-2):3-10. PubMed ID: 11543125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lunar tungsten isotopic evidence for the late veneer.
    Kruijer TS; Kleine T; Fischer-Gödde M; Sprung P
    Nature; 2015 Apr; 520(7548):534-7. PubMed ID: 25855296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics.
    Bermingham KR; Worsham EA; Walker RJ
    Earth Planet Sci Lett; 2018 Apr; 487():221-229. PubMed ID: 30880823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon isotope constraints on terrestrial planet accretion.
    Onyett IJ; Schiller M; Makhatadze GV; Deng Z; Johansen A; Bizzarro M
    Nature; 2023 Jul; 619(7970):539-544. PubMed ID: 37316662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion.
    Zhu K; Moynier F; Schiller M; Alexander CMO; Davidson J; Schrader DL; van Kooten E; Bizzarro M
    Geochim Cosmochim Acta; 2021 May; 301():158-186. PubMed ID: 34393262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ni isotopes provide a glimpse of Earth's pre-late-veneer mantle.
    Xu Y; Szilas K; Zhang L; Zhu JM; Wu G; Zhang J; Qin B; Sun Y; Pearson DG; Liu J
    Sci Adv; 2023 Dec; 9(50):eadj2170. PubMed ID: 38100586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Earth's missing lead may not be in the core.
    Lagos M; Ballhaus C; Münker C; Wohlgemuth-Ueberwasser C; Berndt J; Kuzmin DV
    Nature; 2008 Nov; 456(7218):89-92. PubMed ID: 18987741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov-Gerasimenko.
    Bekaert DV; Broadley MW; Marty B
    Sci Rep; 2020 Apr; 10(1):5796. PubMed ID: 32242104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meteorite Kr in Earth's mantle suggests a late accretionary source for the atmosphere.
    Holland G; Cassidy M; Ballentine CJ
    Science; 2009 Dec; 326(5959):1522-5. PubMed ID: 20007896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.