These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28128376)

  • 1. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper.
    Cao J; Zhao D; Mao Q
    Analyst; 2017 Feb; 142(4):596-602. PubMed ID: 28128376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel strategy for fabrication of sensing layer on thiol-functionalized fiber-optic tapers and their application as SERS probes.
    Cao J; Zhao D; Qin Y
    Talanta; 2019 Mar; 194():895-902. PubMed ID: 30609621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection.
    Wang S; Liu C; Wang H; Chen G; Cong M; Song W; Jia Q; Xu S; Xu W
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11706-13. PubMed ID: 24978908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy.
    Li B; Shi YE; Cui J; Liu Z; Zhang X; Zhan J
    Anal Chim Acta; 2016 Jun; 923():66-73. PubMed ID: 27155303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.
    Huang Z; Lei X; Liu Y; Wang Z; Wang X; Wang Z; Mao Q; Meng G
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17247-54. PubMed ID: 26186260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy.
    Qiu L; Liu Q; Zeng X; Liu Q; Hou X; Tian Y; Wu L
    Talanta; 2018 Sep; 187():13-18. PubMed ID: 29853025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis.
    Stokes DL; Chi Z; Vo-Dinh T
    Appl Spectrosc; 2004 Mar; 58(3):292-8. PubMed ID: 15035709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient fabrication of highly sensitive AgNPs-drawing paper SERS substrates by robotic writing approach.
    Feng L; Duan J; Wang K; Huang L; Xiao G
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120064. PubMed ID: 34146826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Sensitive and Reproducible SERS Substrates Based on Ordered Micropyramid Array and Silver Nanoparticles.
    Zhang C; Chen S; Jiang Z; Shi Z; Wang J; Du L
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):29222-29229. PubMed ID: 34115481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus.
    Liu Y; Huang Z; Zhou F; Lei X; Yao B; Meng G; Mao Q
    Nanoscale; 2016 May; 8(20):10607-14. PubMed ID: 26780542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes.
    Quero G; Zito G; Managò S; Galeotti F; Pisco M; De Luca AC; Cusano A
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L; Lee TH; Elliott SR
    Opt Lett; 2009 Sep; 34(17):2685-7. PubMed ID: 19724532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green in Situ Synthesis of Clean 3D Chestnutlike Ag/WO
    Huang J; Ma D; Chen F; Chen D; Bai M; Xu K; Zhao Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7436-7446. PubMed ID: 28177604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized Tapered Fiber Decorated by Ag Nanoparticles for Raman Measurement with High Sensitivity.
    Li T; Yu Z; Wang Z; Zhu Y; Zhang J
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring Size and Coverage Density of Silver Nanoparticles on Monodispersed Polymer Spheres as Highly Sensitive SERS Substrates.
    Hu Y; Zhao T; Zhu P; Zhu Y; Liang X; Sun R; Wong CP
    Chem Asian J; 2016 Sep; 11(17):2428-35. PubMed ID: 27511618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a three-dimensional (3D) SERS fiber probe and application of in situ detection.
    Meng L; Shang L; Feng S; Tang Z; Bi C; Zhao H; Liu G
    Opt Express; 2022 Jan; 30(2):2353-2363. PubMed ID: 35209377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4-Aminothiophenol capped halloysite nanotubes/silver nanoparticles as surface-enhanced Raman scattering probe for in-situ derivatization and selective determination of nitrite ions in meat product.
    Zhang H; Lai H; Li G; Hu Y
    Talanta; 2020 Dec; 220():121366. PubMed ID: 32928395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet-Confined Electroless Deposition of Silver Nanoparticles on Ordered Superhydrophobic Structures for High Uniform SERS Measurements.
    Xu D; Teng F; Wang Z; Lu N
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21548-21553. PubMed ID: 28580781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.
    Fu Q; Zhan Z; Dou J; Zheng X; Xu R; Wu M; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13322-8. PubMed ID: 26023763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.