These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28128377)

  • 1. Recent developments in reversible photoregulation of oligonucleotide structure and function.
    Lubbe AS; Szymanski W; Feringa BL
    Chem Soc Rev; 2017 Feb; 46(4):1052-1079. PubMed ID: 28128377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocontrol of DNA duplex formation by using azobenzene-bearing oligonucleotides.
    Asanuma H; Liang X; Yoshida T; Komiyama M
    Chembiochem; 2001 Jan; 2(1):39-44. PubMed ID: 11828425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach.
    Liu Q; Deiters A
    Acc Chem Res; 2014 Jan; 47(1):45-55. PubMed ID: 23981235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoregulation between small DNAs and reversible photochromic molecules.
    Wu Z; Zhang L
    Biomater Sci; 2019 Dec; 7(12):4944-4962. PubMed ID: 31650136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible photoswitching of RNA hybridization at room temperature with an azobenzene C-nucleoside.
    Goldau T; Murayama K; Brieke C; Steinwand S; Mondal P; Biswas M; Burghardt I; Wachtveitl J; Asanuma H; Heckel A
    Chemistry; 2015 Feb; 21(7):2845-54. PubMed ID: 25537843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoswitching of DNA Hybridization Using a Molecular Motor.
    Lubbe AS; Liu Q; Smith SJ; de Vries JW; Kistemaker JCM; de Vries AH; Faustino I; Meng Z; Szymanski W; Herrmann A; Feringa BL
    J Am Chem Soc; 2018 Apr; 140(15):5069-5076. PubMed ID: 29551069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoswitch nucleic acid catalytic activity by regulating topological structure with a universal supraphotoswitch.
    Liang X; Zhou M; Kato K; Asanuma H
    ACS Synth Biol; 2013 Apr; 2(4):194-202. PubMed ID: 23656478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotransducers for Near-Infrared Photoregulation in Biomedicine.
    Li J; Duan H; Pu K
    Adv Mater; 2019 Aug; 31(33):e1901607. PubMed ID: 31199021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the Toolbox of Photoswitches for DNA Nanotechnology Using Arylazopyrazoles.
    Adam V; Prusty DK; Centola M; Škugor M; Hannam JS; Valero J; Klöckner B; Famulok M
    Chemistry; 2018 Jan; 24(5):1062-1066. PubMed ID: 29168907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligonucleotide optical switches for intracellular sensing.
    Giannetti A; Tombelli S; Baldini F
    Anal Bioanal Chem; 2013 Jul; 405(19):6181-96. PubMed ID: 23793395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent sets of DNA oligonucleotides for nanotechnology applications.
    Yu W; Lee JS; Johnson C; Kim JW; Deaton R
    IEEE Trans Nanobioscience; 2010 Mar; 9(1):38-43. PubMed ID: 19906601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochromic Nucleosides and Oligonucleotides.
    Bargstedt J; Reinschmidt M; Tydecks L; Kolmar T; Hendrich CM; Jäschke A
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202310797. PubMed ID: 37966433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advance and prospect of bionanomaterials.
    Cui D; Gao H
    Biotechnol Prog; 2003; 19(3):683-92. PubMed ID: 12790626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo design of functional oligonucleotides with acyclic scaffolds.
    Asanuma H; Kashida H; Kamiya Y
    Chem Rec; 2014 Dec; 14(6):1055-69. PubMed ID: 25171046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation and binding energy calculation for estimation of oligonucleotide duplex thermostability in RNA-based therapeutics.
    Shen L; Johnson TL; Clugston S; Huang H; Butenhof KJ; Stanton RV
    J Chem Inf Model; 2011 Aug; 51(8):1957-65. PubMed ID: 21702481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of LNA and 2'-O-methyl RNA in the structure and thermodynamics of RNA hybrid systems: a molecular dynamics study using the revised AMBER force field and comparison with experimental results.
    Yildirim I; Kierzek E; Kierzek R; Schatz GC
    J Phys Chem B; 2014 Dec; 118(49):14177-87. PubMed ID: 25268896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Two-Photon-Photocleavable Linker for Triggering Light-Induced Strand Breaks in Oligonucleotides.
    Weyel XMM; Fichte MAH; Heckel A
    ACS Chem Biol; 2017 Aug; 12(8):2183-2190. PubMed ID: 28678467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible-light photocontrol of (E)/(Z) isomerization of the 4-(dimethylamino)azobenzene pseudo-nucleotide unit incorporated into an oligonucleotide and DNA hybridization in aqueous media.
    Kamei T; Akiyama H; Morii H; Tamaoki N; Uyeda TQ
    Nucleosides Nucleotides Nucleic Acids; 2009; 28(1):12-28. PubMed ID: 19116867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic investigation of the effect of incremental modification of deoxyribose sugars by locked nucleic acid (β-D-LNA and α-L-LNA) moieties on the structures and thermodynamics of DNA-RNA hybrid duplexes.
    Suresh G; Priyakumar UD
    J Phys Chem B; 2014 Jun; 118(22):5853-63. PubMed ID: 24845216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enlightened enzymes: strategies to create novel photoresponsive proteins.
    Krauss U; Drepper T; Jaeger KE
    Chemistry; 2011 Feb; 17(9):2552-60. PubMed ID: 21305623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.