These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28128489)

  • 1. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst.
    Chen S; Perathoner S; Ampelli C; Mebrahtu C; Su D; Centi G
    Angew Chem Int Ed Engl; 2017 Mar; 56(10):2699-2703. PubMed ID: 28128489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance N
    Zhao J; Ren X; Li X; Fan D; Sun X; Ma H; Wei Q; Wu D
    Nanoscale; 2019 Mar; 11(10):4231-4235. PubMed ID: 30809607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroreduction of nitrogen to ammonia on nanoporous gold.
    Ma H; Chen Z; Wang Z
    Nanoscale; 2021 Jan; 13(3):1717-1722. PubMed ID: 33427282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting the Faraday Efficiency of Electrochemical Ammonia Synthesis via the Strain Effect Induced by Interfacial Hybrid Formation between BN and Carbon Nanotubes.
    Zhang M; Shen L; Yu C; Li T; Bai S; Su Y; Liu Z; Li Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8832-8841. PubMed ID: 38327039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Fe
    Peng M; Qiao Y; Luo M; Wang M; Chu S; Zhao Y; Liu P; Liu J; Tan Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40062-40068. PubMed ID: 31584788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts.
    Cui X; Tang C; Liu XM; Wang C; Ma W; Zhang Q
    Chemistry; 2018 Dec; 24(69):18494-18501. PubMed ID: 29907981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D FeOOH nanotube array: an efficient catalyst for ammonia electrosynthesis by nitrite reduction.
    Liu Q; Liu Q; Xie L; Yue L; Li T; Luo Y; Li N; Tang B; Yu L; Sun X
    Chem Commun (Camb); 2022 Apr; 58(33):5160-5163. PubMed ID: 35385567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Reduction of N
    Bao D; Zhang Q; Meng FL; Zhong HX; Shi MM; Zhang Y; Yan JM; Jiang Q; Zhang XB
    Adv Mater; 2017 Jan; 29(3):. PubMed ID: 27859722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient electrohydrogenation of N
    Zhao J; Wang B; Zhou Q; Wang H; Li X; Chen H; Wei Q; Wu D; Luo Y; You J; Gong FF; Sun X
    Chem Commun (Camb); 2019 Apr; 55(34):4997-5000. PubMed ID: 30968881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sandwich-like reduced graphene oxide/yolk-shell-structured Fe@Fe
    Li C; Fu Y; Wu Z; Xia J; Wang X
    Nanoscale; 2019 Jul; 11(27):12997-13006. PubMed ID: 31265035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between Fe
    Kim JH; Ju H; An BS; An Y; Cho K; Kim SH; Bae YS; Yoon HC
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61316-61323. PubMed ID: 34918900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating Defect-Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia.
    Wang Y; Shi MM; Bao D; Meng FL; Zhang Q; Zhou YT; Liu KH; Zhang Y; Wang JZ; Chen ZW; Liu DP; Jiang Z; Luo M; Gu L; Zhang QH; Cao XZ; Yao Y; Shao MH; Zhang Y; Zhang XB; Chen JG; Yan JM; Jiang Q
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9464-9469. PubMed ID: 31090132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinel LiMn
    Li C; Yu J; Yang L; Zhao J; Kong W; Wang T; Asiri AM; Li Q; Sun X
    Inorg Chem; 2019 Aug; 58(15):9597-9601. PubMed ID: 31313568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide.
    Hirakawa H; Hashimoto M; Shiraishi Y; Hirai T
    J Am Chem Soc; 2017 Aug; 139(31):10929-10936. PubMed ID: 28712297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex.
    Pool JA; Lobkovsky E; Chirik PJ
    Nature; 2004 Feb; 427(6974):527-30. PubMed ID: 14765191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Modified Carbon Nanotubes for Enhanced Ammonia Gas Sensitivity at Room Temperature.
    Vu TD; Cong TN; Huu BL; Duc CN; Huu LN
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7447-7451. PubMed ID: 31039911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis.
    Fang Y; Xue Y; Li Y; Yu H; Hui L; Liu Y; Xing C; Zhang C; Zhang D; Wang Z; Chen X; Gao Y; Huang B; Li Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):13021-13027. PubMed ID: 32333453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step hydrothermal synthesis of nitrogen-doped carbon nanotubes as an efficient electrocatalyst for oxygen reduction reactions.
    Chen L; Cui X; Wang Y; Wang M; Cui F; Wei C; Huang W; Hua Z; Zhang L; Shi J
    Chem Asian J; 2014 Oct; 9(10):2915-20. PubMed ID: 25100339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cr
    Du H; Guo X; Kong RM; Qu F
    Chem Commun (Camb); 2018 Nov; 54(91):12848-12851. PubMed ID: 30374491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Electrocatalytic N
    Wei X; Pu M; Jin Y; Wessling M
    ACS Appl Mater Interfaces; 2021 May; 13(18):21411-21425. PubMed ID: 33909402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.