These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28128597)

  • 1. Triaxial-Stress-Induced Homogeneous Hysteresis-Free First-Order Phase Transformations with Stable Intermediate Phases.
    Levitas VI; Chen H; Xiong L
    Phys Rev Lett; 2017 Jan; 118(2):025701. PubMed ID: 28128597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.
    Momeni K; Levitas VI
    Phys Chem Chem Phys; 2016 Apr; 18(17):12183-203. PubMed ID: 27078783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Instability during Solid-Solid Structural Transformations under a General Applied Stress Tensor: Example of Si  I→Si  II with Metallization.
    Zarkevich NA; Chen H; Levitas VI; Johnson DD
    Phys Rev Lett; 2018 Oct; 121(16):165701. PubMed ID: 30387636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress-Measure Dependence of Phase Transformation Criterion under Finite Strains: Hierarchy of Crystal Lattice Instabilities for Homogeneous and Heterogeneous Transformations.
    Babaei H; Levitas VI
    Phys Rev Lett; 2020 Feb; 124(7):075701. PubMed ID: 32142341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    J Phys Chem B; 2006 May; 110(20):10105-19. PubMed ID: 16706472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible metal-hydride phase transformation in epitaxial films.
    Roytburd AL; Boyerinas BM; Bruck HA
    J Phys Condens Matter; 2015 Mar; 27(9):092201. PubMed ID: 25671335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gibbs free energy and equilibrium states in the Si/Si oxide systems.
    Sarikov A; Zacharias M
    J Phys Condens Matter; 2012 Sep; 24(38):385403. PubMed ID: 22927560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and strength of covalent crystals under uniaxial and triaxial loading from first principles.
    Cerný M; Rehák P; Umeno Y; Pokluda J
    J Phys Condens Matter; 2013 Jan; 25(3):035401. PubMed ID: 23238035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.
    Chiu J; Starr FW; Giovambattista N
    J Chem Phys; 2014 Mar; 140(11):114504. PubMed ID: 24655190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature- and Rate-Dependent Pathways in Formation of Metastable Silicon Phases under Rapid Decompression.
    Lin C; Liu X; Yang D; Li X; Smith JS; Wang B; Dong H; Li S; Yang W; Tse JS
    Phys Rev Lett; 2020 Oct; 125(15):155702. PubMed ID: 33095607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic stability limits of simple monoatomic materials.
    Gallington LC; Bongiorno A
    J Chem Phys; 2010 May; 132(17):174707. PubMed ID: 20459183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'Inverse' melting of a vortex lattice.
    Avraham N; Khaykovich B; Myasoedov Y; Rappaport M; Shtrikman H; Feldman DE; Tamegai T; Kes PH; Li M; Konczykowski M; van der Beek K; Zeldov E
    Nature; 2001 May; 411(6836):451-4. PubMed ID: 11373671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and cohesive properties of a C60 monolayer.
    Nakamura J; Nakayama T; Watanabe S; Aono M
    Phys Rev Lett; 2001 Jul; 87(4):048301. PubMed ID: 11461648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High pressure phase transformations revisited.
    Levitas VI
    J Phys Condens Matter; 2018 Apr; 30(16):163001. PubMed ID: 29512511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal-amorphous and crystal-crystal phase transformations via virtual melting.
    Levitas VI
    Phys Rev Lett; 2005 Aug; 95(7):075701. PubMed ID: 16196796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of strain-induced structural changes under high pressure.
    Levitas VI; Zarechnyy OM
    J Phys Chem B; 2006 Aug; 110(32):16035-46. PubMed ID: 16898761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms.
    Levitas VI; Javanbakht M
    Nanoscale; 2014 Jan; 6(1):162-6. PubMed ID: 24213214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation of a stable solid from melt in the presence of multiple metastable intermediate phases: wetting, Ostwald's step rule, and vanishing polymorphs.
    Santra M; Singh RS; Bagchi B
    J Phys Chem B; 2013 Oct; 117(42):13154-63. PubMed ID: 23713546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutual transformation between crystalline phases in silicon after treatment in a planetary mill: HRTEM studies.
    Kulnitskiy B; Annenkov M; Perezhogin I; Popov M; Ovsyannikov D; Blank V
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Oct; 72(Pt 5):733-737. PubMed ID: 27698314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient computation of free energy of crystal phases due to external potentials by error-biased Bennett acceptance ratio method.
    Apte PA
    J Chem Phys; 2010 Feb; 132(8):084101. PubMed ID: 20192284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.