These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 28128919)
1. Carbon Nanofiber/Polycaprolactone/Mineralized Hydroxyapatite Nanofibrous Scaffolds for Potential Orthopedic Applications. Elangomannan S; Louis K; Dharmaraj BM; Kandasamy VS; Soundarapandian K; Gopi D ACS Appl Mater Interfaces; 2017 Feb; 9(7):6342-6355. PubMed ID: 28128919 [TBL] [Abstract][Full Text] [Related]
2. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration. Wu G; Deng X; Song J; Chen F J Photochem Photobiol B; 2018 Jan; 178():27-32. PubMed ID: 29101870 [TBL] [Abstract][Full Text] [Related]
3. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation. Keivani F; Shokrollahi P; Zandi M; Irani S; F Shokrolahi ; Khorasani SC Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():78-88. PubMed ID: 27523999 [TBL] [Abstract][Full Text] [Related]
4. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
5. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Qi H; Ye Z; Ren H; Chen N; Zeng Q; Wu X; Lu T Life Sci; 2016 Mar; 148():139-44. PubMed ID: 26874032 [TBL] [Abstract][Full Text] [Related]
6. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Ba Linh NT; Min YK; Lee BT J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865 [TBL] [Abstract][Full Text] [Related]
7. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552 [TBL] [Abstract][Full Text] [Related]
8. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
9. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338 [TBL] [Abstract][Full Text] [Related]
10. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729 [TBL] [Abstract][Full Text] [Related]
11. Mineralization content alters osteogenic responses of bone marrow stromal cells on hydroxyapatite/polycaprolactone composite nanofiber scaffolds. Ruckh TT; Carroll DA; Weaver JR; Popat KC J Funct Biomater; 2012 Nov; 3(4):776-98. PubMed ID: 24955747 [TBL] [Abstract][Full Text] [Related]
12. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220 [TBL] [Abstract][Full Text] [Related]
13. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
14. Influence of Fish Scale-Based Hydroxyapatite on Forcespun Polycaprolactone Fiber Scaffolds. Kodali D; Hembrick-Holloman V; Gunturu DR; Samuel T; Jeelani S; Rangari VK ACS Omega; 2022 Mar; 7(10):8323-8335. PubMed ID: 35309494 [TBL] [Abstract][Full Text] [Related]
15. Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy. Verma D; Katti K; Katti D J Biomed Mater Res A; 2006 Apr; 77(1):59-66. PubMed ID: 16355408 [TBL] [Abstract][Full Text] [Related]
16. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
17. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating. Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722 [TBL] [Abstract][Full Text] [Related]
18. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Kim H; Che L; Ha Y; Ryu W Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():324-35. PubMed ID: 24857500 [TBL] [Abstract][Full Text] [Related]
19. "Tree to Bone": Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization. Wang D; Jang J; Kim K; Kim J; Park CB Biomacromolecules; 2019 Jul; 20(7):2684-2693. PubMed ID: 31117353 [TBL] [Abstract][Full Text] [Related]
20. Taking Hydroxyapatite-Coated Titanium Implants Two Steps Forward: Surface Modification Using Graphene Mesolayers and a Hydroxyapatite-Reinforced Polymeric Scaffold. Fathi AM; Ahmed MK; Afifi M; Menazea AA; Uskoković V ACS Biomater Sci Eng; 2021 Jan; 7(1):360-372. PubMed ID: 33337854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]