These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 28128919)
21. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
22. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering. Ambre AH; Katti DR; Katti KS J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212 [TBL] [Abstract][Full Text] [Related]
23. Preparation and Characterization of Nanofibrous Scaffolds of Ag/Vanadate Hydroxyapatite Encapsulated into Polycaprolactone: Morphology, Mechanical, and In Vitro Cells Adhesion. El-Hamshary H; El-Naggar ME; El-Faham A; Abu-Saied MA; Ahmed MK; Al-Sahly M Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33919554 [TBL] [Abstract][Full Text] [Related]
24. Biological response, antibacterial properties of ZrO Al-Wafi R; Mansour SF; AlHammad MS; Ahmed MK Int J Pharm; 2021 May; 601():120517. PubMed ID: 33775723 [TBL] [Abstract][Full Text] [Related]
25. Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: a comparative study. Jaiswal AK; Chhabra H; Kadam SS; Londhe K; Soni VP; Bellare JR Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2926-36. PubMed ID: 23623116 [TBL] [Abstract][Full Text] [Related]
26. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering. Reddy CS; Venugopal JR; Ramakrishna S; Zussman E J Biomed Mater Res A; 2014 Oct; 102(10):3713-25. PubMed ID: 24288184 [TBL] [Abstract][Full Text] [Related]
27. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981 [TBL] [Abstract][Full Text] [Related]
28. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901 [TBL] [Abstract][Full Text] [Related]
29. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
30. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
31. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process. Rezaei A; Mohammadi MR Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):390-6. PubMed ID: 25428086 [TBL] [Abstract][Full Text] [Related]
32. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
34. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
35. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties. Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699 [TBL] [Abstract][Full Text] [Related]
36. Fibrous scaffolds of Ag/Fe co-doped hydroxyapatite encapsulated into polycaprolactone: Morphology, mechanical and in vitro cell adhesion. Aly AA; Ahmed MK Int J Pharm; 2021 May; 601():120557. PubMed ID: 33798687 [TBL] [Abstract][Full Text] [Related]
37. A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Chaudhuri B; Mondal B; Ray SK; Sarkar SC Colloids Surf B Biointerfaces; 2016 Jul; 143():71-80. PubMed ID: 26998868 [TBL] [Abstract][Full Text] [Related]
38. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]