BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28128937)

  • 1. Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers.
    Mattiello EM; da Silva RC; Degryse F; Baird R; Gupta VV; McLaughlin MJ
    J Agric Food Chem; 2017 Feb; 65(6):1108-1115. PubMed ID: 28128937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.
    Milani N; Hettiarachchi GM; Kirby JK; Beak DG; Stacey SP; McLaughlin MJ
    PLoS One; 2015; 10(5):e0126275. PubMed ID: 25965385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of ZnSO4 or Zn-EDTA fertilizer to a calcareous soil: Zn diffusion in soil and its uptake by wheat plants.
    Zhao AQ; Tian XH; Chen YL; Li S
    J Sci Food Agric; 2016 Mar; 96(5):1484-91. PubMed ID: 25951009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elemental sulfur effects on Pb and Zn uptake by Indian mustard and winter wheat.
    Yan-shan C; Qing-ren W; Yi-ting D; Hai-feng L
    J Environ Sci (China); 2003 Nov; 15(6):836-40. PubMed ID: 14758905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc-sulfur and cadmium-sulfur association in metalliferous peats: evidence from spectroscopy, distribution coefficients, and phytoavailability.
    Martínez CE; McBride MB; Kandianis MT; Duxbury JM; Yoon SJ; Bleam WF
    Environ Sci Technol; 2002 Sep; 36(17):3683-9. PubMed ID: 12322738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate of elemental sulfur oxidation in some soils of Egypt as affected by the salinity level, moisture, texture, temperature and inoculation.
    Fawzi Abed MA
    Beitr Trop Landwirtsch Veterinarmed; 1976; 14(2):179-85. PubMed ID: 11771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.
    Lambert R; Grant C; Sauvé S
    Sci Total Environ; 2007 Jun; 378(3):293-305. PubMed ID: 17400282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Zn availability, uptake, and effects on earthworms of zinc oxide nanoparticle versus bulk applied to two agricultural soils: Acidic and calcareous.
    García-Gómez C; García-Gutiérrez S; Obrador A; Fernández MD
    Chemosphere; 2020 Jan; 239():124814. PubMed ID: 31527003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.
    Hippler FW; Boaretto RM; Quaggio JA; Boaretto AE; Abreu-Junior CH; Mattos D
    PLoS One; 2015; 10(3):e0116903. PubMed ID: 25751056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite.
    Voegelin A; Jacquat O; Pfister S; Barmettler K; Scheinost AC; Kretzschmar R
    Environ Sci Technol; 2011 Jan; 45(1):255-61. PubMed ID: 21142002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients.
    Kabiri S; Degryse F; Tran DNH; da Silva RC; McLaughlin MJ; Losic D
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43325-43335. PubMed ID: 29160685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching and efficiency of six organic zinc fertilizers applied to navy bean crop grown in a weakly acidic soil of Spain.
    Gonzalez D; Novillo J; Rico MI; Alvarez JM
    J Agric Food Chem; 2008 May; 56(9):3214-21. PubMed ID: 18402454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles.
    Milani N; McLaughlin MJ; Stacey SP; Kirby JK; Hettiarachchi GM; Beak DG; Cornelis G
    J Agric Food Chem; 2012 Apr; 60(16):3991-8. PubMed ID: 22480134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans.
    NareshKumar R; Nagendran R
    J Hazard Mater; 2008 Aug; 156(1-3):102-7. PubMed ID: 18206305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11.
    Lee EY; Lee NY; Cho KS; Ryu HW
    J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological treatment of saline-alkali soil by Sulfur-oxidizing bacteria.
    Bao S; Wang Q; Bao X; Li M; Wang Z
    Bioengineered; 2016 Sep; 7(5):372-375. PubMed ID: 27558517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores.
    Martínez CE; Yáñez C; Yoon SJ; Bruns MA
    Environ Sci Technol; 2007 Aug; 41(15):5323-9. PubMed ID: 17822097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Soil pH and Coatings on the Efficacy of Polymer coated ZnO Nanoparticulate fertilizers in Wheat (
    Elhaj Baddar Z; Unrine JM
    Environ Sci Technol; 2021 Oct; 55(20):13532-13540. PubMed ID: 33999618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans.
    Kumar RN; Nagendran R
    Chemosphere; 2007 Jan; 66(9):1775-81. PubMed ID: 16979697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans.
    Suzuki I; Lee D; Mackay B; Harahuc L; Oh JK
    Appl Environ Microbiol; 1999 Nov; 65(11):5163-8. PubMed ID: 10543839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.