BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1061 related articles for article (PubMed ID: 28129117)

  • 1. Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy.
    Kamran N; Kadiyala P; Saxena M; Candolfi M; Li Y; Moreno-Ayala MA; Raja N; Shah D; Lowenstein PR; Castro MG
    Mol Ther; 2017 Jan; 25(1):232-248. PubMed ID: 28129117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic Efficacy of Immune Stimulatory Thymidine Kinase and fms-like Tyrosine Kinase 3 Ligand (TK/Flt3L) Gene Therapy in a Mouse Model of High-Grade Brainstem Glioma.
    Mendez F; Kadiyala P; Nunez FJ; Carney S; Nunez FM; Gauss JC; Ravindran R; Pawar S; Edwards M; Garcia-Fabiani MB; Haase S; Lowenstein PR; Castro MG
    Clin Cancer Res; 2020 Aug; 26(15):4080-4092. PubMed ID: 32332014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of tumor antigen-specific T-cells isolated from the tumor microenvironment of sleeping beauty induced murine glioma models.
    Alghamri MS; Núñez FJ; Kamran N; Carney S; Altshuler D; Lowenstein PR; Castro MG
    Methods Enzymol; 2020; 631():91-106. PubMed ID: 31948569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiglioma immunological memory in response to conditional cytotoxic/immune-stimulatory gene therapy: humoral and cellular immunity lead to tumor regression.
    Ghulam Muhammad AK; Candolfi M; King GD; Yagiz K; Foulad D; Mineharu Y; Kroeger KM; Treuer KA; Nichols WS; Sanderson NS; Yang J; Khayznikov M; Van Rooijen N; Lowenstein PR; Castro MG
    Clin Cancer Res; 2009 Oct; 15(19):6113-27. PubMed ID: 19789315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blockade of mTOR signaling via rapamycin combined with immunotherapy augments antiglioma cytotoxic and memory T-cell functions.
    Mineharu Y; Kamran N; Lowenstein PR; Castro MG
    Mol Cancer Ther; 2014 Dec; 13(12):3024-36. PubMed ID: 25256739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined immunostimulation and conditional cytotoxic gene therapy provide long-term survival in a large glioma model.
    Ali S; King GD; Curtin JF; Candolfi M; Xiong W; Liu C; Puntel M; Cheng Q; Prieto J; Ribas A; Kupiec-Weglinski J; van Rooijen N; Lassmann H; Lowenstein PR; Castro MG
    Cancer Res; 2005 Aug; 65(16):7194-204. PubMed ID: 16103070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional assay to assess T-cell inhibitory properties of myeloid derived suppressor cells (MDSCs) isolated from the tumor microenvironment of murine glioma models.
    Alghamri MS; Kamran N; Kadiyala P; Lowenstein PR; Castro MG
    Methods Enzymol; 2020; 632():215-228. PubMed ID: 32000897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression profiling of immune inhibitory Siglecs and their ligands in patients with glioma.
    Santegoets KCM; Gielen PR; Büll C; Schulte BM; Kers-Rebel ED; Küsters B; Bossman SAJFH; Ter Laan M; Wesseling P; Adema GJ
    Cancer Immunol Immunother; 2019 Jun; 68(6):937-949. PubMed ID: 30953118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Emerging Role of Myeloid-Derived Suppressor Cells in the Glioma Immune Suppressive Microenvironment.
    Mi Y; Guo N; Luan J; Cheng J; Hu Z; Jiang P; Jin W; Gao X
    Front Immunol; 2020; 11():737. PubMed ID: 32391020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depletion of myeloid-derived suppressor cells during interleukin-12 immunogene therapy does not confer a survival advantage in experimental malignant glioma.
    Thaci B; Ahmed AU; Ulasov IV; Wainwright DA; Nigam P; Auffinger B; Tobias AL; Han Y; Zhang L; Moon KS; Lesniak MS
    Cancer Gene Ther; 2014 Jan; 21(1):38-44. PubMed ID: 24434573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy.
    Kamran N; Chandran M; Lowenstein PR; Castro MG
    Clin Immunol; 2018 Apr; 189():34-42. PubMed ID: 27777083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas.
    Flores-Toro JA; Luo D; Gopinath A; Sarkisian MR; Campbell JJ; Charo IF; Singh R; Schall TJ; Datta M; Jain RK; Mitchell DA; Harrison JK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1129-1138. PubMed ID: 31879345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary basis of a new gene- and immune-therapeutic approach for the treatment of malignant brain tumors: from mice to clinical trials for glioma patients.
    Lowenstein PR; Castro MG
    Clin Immunol; 2018 Apr; 189():43-51. PubMed ID: 28720549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function.
    Gielen PR; Schulte BM; Kers-Rebel ED; Verrijp K; Bossman SA; Ter Laan M; Wesseling P; Adema GJ
    Neuro Oncol; 2016 Sep; 18(9):1253-64. PubMed ID: 27006175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene therapy-mediated reprogramming tumor infiltrating T cells using IL-2 and inhibiting NF-κB signaling improves the efficacy of immunotherapy in a brain cancer model.
    Mineharu Y; Muhammad AK; Yagiz K; Candolfi M; Kroeger KM; Xiong W; Puntel M; Liu C; Levy E; Lugo C; Kocharian A; Allison JP; Curran MA; Lowenstein PR; Castro MG
    Neurotherapeutics; 2012 Oct; 9(4):827-43. PubMed ID: 22996231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the brain tumor microenvironment enhances the efficacy of dendritic cell vaccination: implications for clinical trial design.
    Mineharu Y; King GD; Muhammad AK; Bannykh S; Kroeger KM; Liu C; Lowenstein PR; Castro MG
    Clin Cancer Res; 2011 Jul; 17(14):4705-18. PubMed ID: 21632862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of adenoviral vector-mediated transgene expression in the canine brain in vivo, and in canine glioma cells in vitro.
    Candolfi M; Pluhar GE; Kroeger K; Puntel M; Curtin J; Barcia C; Muhammad AK; Xiong W; Liu C; Mondkar S; Kuoy W; Kang T; McNeil EA; Freese AB; Ohlfest JR; Moore P; Palmer D; Ng P; Young JD; Lowenstein PR; Castro MG
    Neuro Oncol; 2007 Jul; 9(3):245-58. PubMed ID: 17522335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmacytoid dendritic cells in the tumor microenvironment: immune targets for glioma therapeutics.
    Candolfi M; King GD; Yagiz K; Curtin JF; Mineharu Y; Muhammad AK; Foulad D; Kroeger KM; Barnett N; Josien R; Lowenstein PR; Castro MG
    Neoplasia; 2012 Aug; 14(8):757-70. PubMed ID: 22952428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs.
    Lakshmanachetty S; Cruz-Cruz J; Hoffmeyer E; Cole AP; Mitra SS
    Cells; 2021 Apr; 10(4):. PubMed ID: 33919732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmed Death-Ligand 1 Expression Potentiates the Immune Modulatory Function Of Myeloid-Derived Suppressor Cells in Systemic Lupus Erythematosus.
    Park MJ; Baek JA; Choi JW; Jang SG; Kim DS; Park SH; Cho ML; Kwok SK
    Front Immunol; 2021; 12():606024. PubMed ID: 33986739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.