These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28129594)

  • 1. Importance of hydrogen bonding and aromaticity indices in QSAR modeling of the antioxidative capacity of selected (poly)phenolic antioxidants.
    Jeremić S; Radenković S; Filipović M; Antić M; Amić A; Marković Z
    J Mol Graph Model; 2017 Mar; 72():240-245. PubMed ID: 28129594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The surrounding environments on the structure and antioxidative activity of luteolin.
    Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM
    J Mol Model; 2018 Jun; 24(7):149. PubMed ID: 29869725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationship study of antioxidative peptides by QSAR modeling: the amino acid next to C-terminus affects the activity.
    Li YW; Li B; He J; Qian P
    J Pept Sci; 2011 Jun; 17(6):454-62. PubMed ID: 21491545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of structure-antioxidant activity relationship of peptides in free radical systems using QSAR models: key sequence positions and their amino acid properties.
    Li YW; Li B
    J Theor Biol; 2013 Feb; 318():29-43. PubMed ID: 23127747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the antioxidant activity of phenols by non-covalent interactions.
    Amorati R; Valgimigli L
    Org Biomol Chem; 2012 Jun; 10(21):4147-58. PubMed ID: 22505046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and antioxidant activity of polyphenols derived from propolis.
    Kurek-Górecka A; Rzepecka-Stojko A; Górecki M; Stojko J; Sosada M; Swierczek-Zieba G
    Molecules; 2013 Dec; 19(1):78-101. PubMed ID: 24362627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects of polyphenols, tocopherol and ascorbic acid on the Cu2+-mediated oxidative modification of human low density lipoproteins.
    Yeomans VC; Linseisen J; Wolfram G
    Eur J Nutr; 2005 Oct; 44(7):422-8. PubMed ID: 15827683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function relationship of phenolic antioxidants in topical skin health products.
    Jung K; Everson RJ; Joshi B; Bulsara PA; Upasani R; Clarke MJ
    Int J Cosmet Sci; 2017 Apr; 39(2):217-223. PubMed ID: 27643384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive neuro-fuzzy inference system-applied QSAR with bond dissociation energy for antioxidant activities of phenolic compounds.
    Jhin C; Nho CW; Hwang KT
    Arch Pharm Res; 2017 Oct; 40(10):1146-1155. PubMed ID: 28801892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating molecular diversity from antioxidants in Brazilian propolis. Combination of TOPS-MODE QSAR and virtual structure generation.
    Estrada E; Quincoces JA; Patlewicz G
    Mol Divers; 2004; 8(1):21-33. PubMed ID: 14964785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.
    Chen Y; Xiao H; Zheng J; Liang G
    PLoS One; 2015; 10(3):e0121276. PubMed ID: 25803685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant QSAR modeling as exemplified on polyphenols.
    Lucić B; Amić D; Trinajstić N
    Methods Mol Biol; 2008; 477():207-18. PubMed ID: 19082949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids.
    Marković S; Tošović J
    Food Chem; 2016 Nov; 210():585-92. PubMed ID: 27211685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR study of antioxidant activity of wine polyphenols.
    Rastija V; Medić-Sarić M
    Eur J Med Chem; 2009 Jan; 44(1):400-8. PubMed ID: 18403057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features.
    Spiegel M; Kapusta K; Kołodziejczyk W; Saloni J; Żbikowska B; Hill GA; Sroka Z
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32645868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does the presence of an oxyradical influence the behavior of polyphenolic antioxidant? A case study on gallic acid.
    Rohman R; Kar R
    J Mol Model; 2018 Jun; 24(7):165. PubMed ID: 29923145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of polychlorinated phenols and evaluation of their toxicity, biodegradation and bioconcentration using three-dimensional quantitative structure-activity relationship models.
    Tong L; Guo L; Lv X; Li Y
    J Mol Graph Model; 2017 Jan; 71():1-12. PubMed ID: 27825025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSAR Analysis for Antioxidant Activity of Dipicolinic Acid Derivatives.
    Rastija V; Molnar M; Siladi T; Masand VH
    Comb Chem High Throughput Screen; 2018; 21(3):204-214. PubMed ID: 29436998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actual structure, thermodynamic driving force, and mechanism of benzofuranone-typical compounds as antioxidants in solution.
    Zhu XQ; Zhou J; Wang CH; Li XT; Jing S
    J Phys Chem B; 2011 Apr; 115(13):3588-603. PubMed ID: 21405097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.