These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 28129622)

  • 1. Effect of liming on polycyclic aromatic hydrocarbons leaching from hydrocarbon-contaminated tectogenic industriosol.
    Martin N; Le Guet T; Dupuy F; Grybos M; Joussein E
    Environ Pollut; 2024 Jun; 351():124063. PubMed ID: 38697254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of functions and mechanisms of clay soil conditioners and catalysts in thermal remediation compared to emerging photo-thermal catalysis.
    Zhang J; Wang S; Wang X; Jiao W; Zhang M; Ma F
    J Environ Sci (China); 2025 Jan; 147():22-35. PubMed ID: 39003042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological Risk Assessment of Three Pesticide Additives in Soil and Application to the Remediation of Contaminated Soil.
    Li Y; Zhang J; Wang W; Lu Y; Sun L; Zhang Y
    Environ Toxicol Chem; 2024 Jul; 43(7):1677-1689. PubMed ID: 38661489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application and Selection of Remediation Technology for OCPs-Contaminated Sites by Decision-Making Methods.
    Tian J; Huo Z; Ma F; Gao X; Wu Y
    Int J Environ Res Public Health; 2019 May; 16(11):. PubMed ID: 31142038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of aeration enhanced surfactant soil washing for remediation of diesel-contaminated soils using response surface methodology.
    Ayele BA; Lu J; Chen Q
    PeerJ; 2020; 8():e8578. PubMed ID: 32095374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clarification of generation mechanism of volatilization flux based on detailed analysis of transport phenomena near the ground surface and quantitative evaluation of influencing factors.
    Kondo M; Sakamoto Y; Hara J; Komai T; Watanabe N
    J Hazard Mater; 2024 Mar; 465():133356. PubMed ID: 38183936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration with carbon capture technology enables a positive carbon balance for sustainable rice paddy remediation with calcium‑silicon composites.
    Ran Q; Liu K; Du Y; Liu C; Fang L; Li F
    Sci Total Environ; 2024 Feb; 912():169034. PubMed ID: 38061649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting removal efficiency of organic pollutants by soil vapor extraction based on an optimized machine learning method.
    Zhang S; Zhao J; Zhu L
    Sci Total Environ; 2024 Jun; 927():172438. PubMed ID: 38614354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of organic matter on transformation during thermal remediation of pyrene-contaminated substrates.
    Oden CP; Werth CJ; Kienzle BA; Katz LE
    Sci Total Environ; 2024 Jan; 906():167569. PubMed ID: 37793444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanochemical degradation performance of lindane in different types of soils: The effects of soil properties and elemental components.
    Zhang Z; Mao L; Liu X; Zhao X; Lin C; He M; Ouyang W
    Sci Total Environ; 2024 Mar; 918():170422. PubMed ID: 38290674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of factors affecting the remediation of contaminated soil through pneumatic fracturing and soil vapor extraction.
    Liu Y; Huang F; Zhou D; Wang T; Wang G
    J Hazard Mater; 2024 Apr; 467():133776. PubMed ID: 38354439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical assessment of influential factors and application in chlorinated hydrocarbon detection with membrane interface probe.
    Zhao Z; Wu M; Cai G; Duan W; Puppala AJ
    J Hazard Mater; 2024 Jul; 472():134481. PubMed ID: 38723483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging investigator series: Aramid amphiphile nanoribbons for the remediation of lead from contaminated water.
    Christoff-Tempesta T; Ortony JH
    Environ Sci Nano; 2021 Jun; 8(6):1536-1542. PubMed ID: 34211721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quicklime and Superphosphate Alleviating Apple Replant Disease by Improving Acidified Soil.
    Zhao L; Jiang W; Chen R; Wang H; Duan Y; Chen X; Shen X; Yin C; Mao Z
    ACS Omega; 2022 Mar; 7(9):7920-7930. PubMed ID: 35284737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.
    Ma Y; Dong B; He X; Shi Y; Xu M; He X; Du X; Li F
    Chemosphere; 2017 Apr; 173():435-443. PubMed ID: 28129622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.
    Ma Y; Du X; Shi Y; Xu Z; Fang J; Li Z; Li F
    Chemosphere; 2015 Feb; 121():117-23. PubMed ID: 25433980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.
    Ma Y; Shi Y; Hou D; Zhang X; Chen J; Wang Z; Xu Z; Li F; Du X
    J Environ Sci (China); 2017 Apr; 54():328-335. PubMed ID: 28391943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of quicklime mixing for the remediation of petroleum contaminated soils.
    Schifano V; Macleod C; Hadlow N; Dudeney R
    J Hazard Mater; 2007 Mar; 141(2):395-409. PubMed ID: 16843595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetics applied in remediation of subsurface soil contaminated with chlorinated ethenes - A review.
    Ottosen LM; Larsen TH; Jensen PE; Kirkelund GM; Kerrn-Jespersen H; Tuxen N; Hyldegaard BH
    Chemosphere; 2019 Nov; 235():113-125. PubMed ID: 31255751
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.