BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 28129719)

  • 1. Differences in Reperfusion-Induced Mitochondrial Oxidative Stress and Cell Death Between Hippocampal CA1 and CA3 Subfields Are Due to the Mitochondrial Thioredoxin System.
    Yin B; Barrionuevo G; Batinic-Haberle I; Sandberg M; Weber SG
    Antioxid Redox Signal; 2017 Sep; 27(9):534-549. PubMed ID: 28129719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial GSH Systems in CA1 Pyramidal Cells and Astrocytes React Differently during Oxygen-Glucose Deprivation and Reperfusion.
    Yin B; Barrionuevo G; Weber SG
    ACS Chem Neurosci; 2018 Apr; 9(4):738-748. PubMed ID: 29172440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
    Lopert P; Patel M
    Redox Biol; 2014; 2():667-72. PubMed ID: 24936441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Vulnerability of CA1 versus CA3 Pyramidal Neurons After Ischemia: Possible Relationship to Sources of Zn2+ Accumulation and Its Entry into and Prolonged Effects on Mitochondria.
    Medvedeva YV; Ji SG; Yin HZ; Weiss JH
    J Neurosci; 2017 Jan; 37(3):726-737. PubMed ID: 28100752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized real-time monitoring of glutathione redox status in single pyramidal neurons in organotypic hippocampal slices during oxygen-glucose deprivation and reperfusion.
    Yin B; Barrionuevo G; Weber SG
    ACS Chem Neurosci; 2015 Nov; 6(11):1838-48. PubMed ID: 26291433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices.
    Feeney CJ; Frantseva MV; Carlen PL; Pennefather PS; Shulyakova N; Shniffer C; Mills LR
    Brain Res; 2008 Mar; 1198():1-15. PubMed ID: 18261717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upregulated thioredoxin and its reductase prevent H
    Park WH
    Toxicol In Vitro; 2019 Dec; 61():104590. PubMed ID: 31279089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFTR prevents neuronal apoptosis following cerebral ischemia reperfusion via regulating mitochondrial oxidative stress.
    Zhang YP; Zhang Y; Xiao ZB; Zhang YB; Zhang J; Li ZQ; Zhu YB
    J Mol Med (Berl); 2018 Jul; 96(7):611-620. PubMed ID: 29761302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of thioredoxin-2 reductase and glutathione peroxidase to H(2)O(2) detoxification of rat brain mitochondria.
    Kudin AP; Augustynek B; Lehmann AK; Kovács R; Kunz WS
    Biochim Biophys Acta; 2012 Oct; 1817(10):1901-6. PubMed ID: 22398128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thioredoxin antioxidant system.
    Lu J; Holmgren A
    Free Radic Biol Med; 2014 Jan; 66():75-87. PubMed ID: 23899494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thioredoxin and glutathione-dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays.
    Munro D; Banh S; Sotiri E; Tamanna N; Treberg JR
    Free Radic Biol Med; 2016 Jul; 96():334-46. PubMed ID: 27101737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thioredoxin reductase and/or thioredoxin system-based mechanism for antioxidant effects of ambroxol.
    Huang J; Xu J; Tian L; Zhong L
    Biochimie; 2014 Feb; 97():92-103. PubMed ID: 24103200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment at the single-cell level identifies neuronal glutathione depletion as both a cause and effect of ischemia-reperfusion oxidative stress.
    Won SJ; Kim JE; Cittolin-Santos GF; Swanson RA
    J Neurosci; 2015 May; 35(18):7143-52. PubMed ID: 25948264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Base excision repair activities in organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation.
    Rolseth V; Rundén-Pran E; Neurauter CG; Yndestad A; Luna L; Aukrust P; Ottersen OP; Bjørås M
    DNA Repair (Amst); 2008 Jun; 7(6):869-78. PubMed ID: 18406215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of propofol on mitochondrial dysfunction following focal cerebral ischemia-reperfusion in rats.
    Li J; Yu W; Li XT; Qi SH; Li B
    Neuropharmacology; 2014 Feb; 77():358-68. PubMed ID: 24035920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective vulnerability and early progression of hippocampal CA1 pyramidal cell degeneration and GFAP-positive astrocyte reactivity in the rat four-vessel occlusion model of transient global ischemia.
    Ordy JM; Wengenack TM; Bialobok P; Coleman PD; Rodier P; Baggs RB; Dunlap WP; Kates B
    Exp Neurol; 1993 Jan; 119(1):128-39. PubMed ID: 8432346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons.
    Stanika RI; Winters CA; Pivovarova NB; Andrews SB
    Neurobiol Dis; 2010 Feb; 37(2):403-11. PubMed ID: 19879359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampal cellular stress responses after global brain ischemia and reperfusion.
    Roberts GG; Di Loreto MJ; Marshall M; Wang J; DeGracia DJ
    Antioxid Redox Signal; 2007 Dec; 9(12):2265-75. PubMed ID: 17715997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insufficient endogenous redox buffer capacity may underlie neuronal vulnerability to cerebral ischemia and reperfusion.
    Röhnert P; Schröder UH; Ziabreva I; Täger M; Reymann KG; Striggow F
    J Neurosci Res; 2012 Jan; 90(1):193-202. PubMed ID: 21971686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.