BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1474 related articles for article (PubMed ID: 28130074)

  • 21. Regulation of Brown and White Adipocyte Transcriptome by the Transcriptional Coactivator NT-PGC-1α.
    Kim J; Fernand VE; Henagan TM; Shin J; Huypens P; Newman S; Gettys TW; Chang JS
    PLoS One; 2016; 11(7):e0159990. PubMed ID: 27454177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beta 3-adrenergic agonist up-regulates uncoupling proteins 2 and 3 in skeletal muscle of the mouse.
    Nakamura Y; Nagase I; Asano A; Sasaki N; Yoshida T; Umekawa T; Sakane N; Saito M
    J Vet Med Sci; 2001 Mar; 63(3):309-14. PubMed ID: 11307932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice.
    Castro É; Vieira TS; Oliveira TE; Ortiz-Silva M; Andrade ML; Tomazelli CA; Peixoto AS; Sobrinho CR; Moreno MF; Gilio GR; Moreira RJ; Guimarães RC; Perandini LA; Chimin P; Reckziegel P; Moretti EH; Steiner AA; Laplante M; Festuccia WT
    Am J Physiol Endocrinol Metab; 2021 Nov; 321(5):E592-E605. PubMed ID: 34541875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential regulation of mouse uncoupling proteins among brown adipose tissue, white adipose tissue, and skeletal muscle in chronic beta 3 adrenergic receptor agonist treatment.
    Yoshitomi H; Yamazaki K; Abe S; Tanaka I
    Biochem Biophys Res Commun; 1998 Dec; 253(1):85-91. PubMed ID: 9875224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncoupling proteins 2 and 3 with age: regulation by fasting and beta3-adrenergic agonist treatment.
    Scarpace PJ; Kumar MV; Li H; Tümer N
    J Gerontol A Biol Sci Med Sci; 2000 Dec; 55(12):B588-92. PubMed ID: 11129388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold acclimation and pioglitazone combined increase thermogenic capacity of brown and white adipose tissues but this does not translate into higher energy expenditure in mice.
    Valdivia LFG; Castro É; Eichler RADS; Moreno MF; de Sousa É; Jardim GFR; Peixoto ÁS; Moraes MN; Castrucci AML; Nedergaard J; Petrovic N; Festuccia WT; Reckziegel P
    Am J Physiol Endocrinol Metab; 2023 Apr; 324(4):E358-E373. PubMed ID: 36856189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective Impairment of Glucose but Not Fatty Acid or Oxidative Metabolism in Brown Adipose Tissue of Subjects With Type 2 Diabetes.
    Blondin DP; Labbé SM; Noll C; Kunach M; Phoenix S; Guérin B; Turcotte ÉE; Haman F; Richard D; Carpentier AC
    Diabetes; 2015 Jul; 64(7):2388-97. PubMed ID: 25677914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men.
    Blondin DP; Labbé SM; Phoenix S; Guérin B; Turcotte ÉE; Richard D; Carpentier AC; Haman F
    J Physiol; 2015 Feb; 593(3):701-14. PubMed ID: 25384777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PPARγ agonist rosiglitazone switches fuel preference to lipids in promoting thermogenesis under cold exposure in C57BL/6 mice.
    Gao R; Chen W; Yan H; Xie X; Liu D; Wu C; Zhu Z; Li H; Dong F; Wang L
    J Proteomics; 2018 Mar; 176():24-36. PubMed ID: 29414316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment.
    Larson CJ
    Handb Exp Pharmacol; 2019; 251():381-424. PubMed ID: 30689089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FABP3 and brown adipocyte-characteristic mitochondrial fatty acid oxidation enzymes are induced in beige cells in a different pathway from UCP1.
    Nakamura Y; Sato T; Shiimura Y; Miura Y; Kojima M
    Biochem Biophys Res Commun; 2013 Nov; 441(1):42-6. PubMed ID: 24129192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive thermogenesis in brown adipose tissue involves activation of pannexin-1 channels.
    Senthivinayagam S; Serbulea V; Upchurch CM; Polanowska-Grabowska R; Mendu SK; Sahu S; Jayaguru P; Aylor KW; Chordia MD; Steinberg L; Oberholtzer N; Uchiyama S; Inada N; Lorenz UM; Harris TE; Keller SR; Meher AK; Kadl A; Desai BN; Kundu BK; Leitinger N
    Mol Metab; 2021 Feb; 44():101130. PubMed ID: 33248294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing.
    Gonzalez-Hurtado E; Lee J; Choi J; Wolfgang MJ
    Mol Metab; 2018 Jan; 7():45-56. PubMed ID: 29175051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origins and early development of the concept that brown adipose tissue thermogenesis is linked to energy balance and obesity.
    Trayhurn P
    Biochimie; 2017 Mar; 134():62-70. PubMed ID: 27621146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects.
    Shabalina IG; Hoeks J; Kramarova TV; Schrauwen P; Cannon B; Nedergaard J
    Biochim Biophys Acta; 2010; 1797(6-7):968-80. PubMed ID: 20227385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The glycoprotein follistatin-like 1 promotes brown adipose thermogenesis.
    Fang D; Shi X; Lu T; Ruan H; Gao Y
    Metabolism; 2019 Sep; 98():16-26. PubMed ID: 31132382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liraglutide Activates Type 2 Deiodinase and Enhances β3-Adrenergic-Induced Thermogenesis in Mouse Adipose Tissue.
    Oliveira FCB; Bauer EJ; Ribeiro CM; Pereira SA; Beserra BTS; Wajner SM; Maia AL; Neves FAR; Coelho MS; Amato AA
    Front Endocrinol (Lausanne); 2021; 12():803363. PubMed ID: 35069450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. β₁-Adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated β₃-adrenergic receptor-knockout mice via nonshivering thermogenesis.
    Mattsson CL; Csikasz RI; Chernogubova E; Yamamoto DL; Hogberg HT; Amri EZ; Hutchinson DS; Bengtsson T
    Am J Physiol Endocrinol Metab; 2011 Dec; 301(6):E1108-18. PubMed ID: 21878665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transcriptional co-regulator LDB1 is required for brown adipose function.
    Kepple JD; Liu Y; Kim T; Cero C; Johnson JW; Rowe GC; Cypess AM; Habegger KM; Young M; Hunter CS
    Mol Metab; 2021 Nov; 53():101284. PubMed ID: 34198011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of UCP1 and β3AR gene polymorphisms on age-related changes in brown adipose tissue and adiposity in humans.
    Yoneshiro T; Ogawa T; Okamoto N; Matsushita M; Aita S; Kameya T; Kawai Y; Iwanaga T; Saito M
    Int J Obes (Lond); 2013 Jul; 37(7):993-8. PubMed ID: 23032405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 74.