BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 28130182)

  • 1. Induction of CFTR gene expression by 1,25(OH)
    DiFranco KM; Mulligan JK; Sumal AS; Diamond G
    J Steroid Biochem Mol Biol; 2017 Oct; 173():323-332. PubMed ID: 28130182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.
    Chow EC; Quach HP; Vieth R; Pang KS
    Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin D attenuates inflammation in CFTR knockdown intestinal epithelial cells but has no effect in cells with intact CFTR.
    Morin G; Orlando V; St-Martin Crites K; Patey N; Mailhot G
    Am J Physiol Gastrointest Liver Physiol; 2016 Apr; 310(8):G539-49. PubMed ID: 26893158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the 1,25-dihydroxyvitamin D3-24-hydroxylase gene in rat intestine: response to calcium, vitamin D3 and calcitriol administration in vivo.
    Lemay J; Demers C; Hendy GN; Delvin EE; Gascon-Barré M
    J Bone Miner Res; 1995 Aug; 10(8):1148-57. PubMed ID: 8585417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium.
    Bland R; Walker EA; Hughes SV; Stewart PM; Hewison M
    Endocrinology; 1999 May; 140(5):2027-34. PubMed ID: 10218951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites.
    Tuohimaa P; Wang JH; Khan S; Kuuslahti M; Qian K; Manninen T; Auvinen P; Vihinen M; Lou YR
    PLoS One; 2013; 8(10):e75338. PubMed ID: 24116037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin D Metabolism Is Dysregulated in Asthma and Chronic Obstructive Pulmonary Disease.
    Jolliffe DA; Stefanidis C; Wang Z; Kermani NZ; Dimitrov V; White JH; McDonough JE; Janssens W; Pfeffer P; Griffiths CJ; Bush A; Guo Y; Christenson S; Adcock IM; Chung KF; Thummel KE; Martineau AR
    Am J Respir Crit Care Med; 2020 Aug; 202(3):371-382. PubMed ID: 32186892
    [No Abstract]   [Full Text] [Related]  

  • 8. Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse.
    Masuda S; Byford V; Arabian A; Sakai Y; Demay MB; St-Arnaud R; Jones G
    Endocrinology; 2005 Feb; 146(2):825-34. PubMed ID: 15498883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 25-hydroxyvitamin D3 is an active hormone in human primary prostatic stromal cells.
    Lou YR; Laaksi I; Syvälä H; Bläuer M; Tammela TL; Ylikomi T; Tuohimaa P
    FASEB J; 2004 Feb; 18(2):332-4. PubMed ID: 14657005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin D metabolism in human prostate cells: implications for prostate cancer chemoprevention by vitamin D.
    Flanagan JN; Young MV; Persons KS; Wang L; Mathieu JS; Whitlatch LW; Holick MF; Chen TC
    Anticancer Res; 2006; 26(4A):2567-72. PubMed ID: 16886665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 25-Hydroxyvitamin D
    Lou YR; Toh TC; Tee YH; Yu H
    Sci Rep; 2017 Feb; 7():42816. PubMed ID: 28211493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of vitamin D metabolites on proliferation and differentiation of cultured human epidermal keratinocytes grown in serum-free or defined culture medium.
    Itin PH; Pittelkow MR; Kumar R
    Endocrinology; 1994 Nov; 135(5):1793-8. PubMed ID: 7956903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3.
    Kubota M; Ohno J; Shiina Y; Suda T
    Endocrinology; 1982 Jun; 110(6):1950-6. PubMed ID: 6280980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-proliferative activity of 25-hydroxyvitamin D3 in human prostate cells.
    Munetsuna E; Kawanami R; Nishikawa M; Ikeda S; Nakabayashi S; Yasuda K; Ohta M; Kamakura M; Ikushiro S; Sakaki T
    Mol Cell Endocrinol; 2014 Feb; 382(2):960-70. PubMed ID: 24291609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of 25-hydroxyvitamin D3-24-hydroxylase activity in Caco-2 cells. An in vitro model of intestinal vitamin D catabolism.
    Tomon M; Tenenhouse HS; Jones G
    Endocrinology; 1990 Jun; 126(6):2868-75. PubMed ID: 2351099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human mammary epithelial cells express CYP27B1 and are growth inhibited by 25-hydroxyvitamin D-3, the major circulating form of vitamin D-3.
    Kemmis CM; Salvador SM; Smith KM; Welsh J
    J Nutr; 2006 Apr; 136(4):887-92. PubMed ID: 16549446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of 1,25-dihydroxyvitamin D
    Nishikawa M; Yasuda K; Takamatsu M; Abe K; Nakagawa K; Tsugawa N; Hirota Y; Tanaka K; Yamashita S; Ikushiro S; Suda T; Okano T; Sakaki T
    J Steroid Biochem Mol Biol; 2019 Jan; 185():71-79. PubMed ID: 30031146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcitriol regulates the expression of the genes encoding the three key vitamin D3 hydroxylases and the drug-metabolizing enzyme CYP3A4 in the human fetal intestine.
    Theodoropoulos C; Demers C; Delvin E; Ménard D; Gascon-Barré M
    Clin Endocrinol (Oxf); 2003 Apr; 58(4):489-99. PubMed ID: 12641633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Effects of Oral Boluses of Vitamin D2 vs Vitamin D3 on Vitamin D Metabolism: A Randomized Controlled Trial.
    Martineau AR; Thummel KE; Wang Z; Jolliffe DA; Boucher BJ; Griffin SJ; Forouhi NG; Hitman GA
    J Clin Endocrinol Metab; 2019 Dec; 104(12):5831-5839. PubMed ID: 31199458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Down-regulation of IL-8 by high-dose vitamin D is specific to hyperinflammatory macrophages and involves mechanisms beyond up-regulation of DUSP1.
    Dauletbaev N; Herscovitch K; Das M; Chen H; Bernier J; Matouk E; Bérubé J; Rousseau S; Lands LC
    Br J Pharmacol; 2015 Oct; 172(19):4757-71. PubMed ID: 26178144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.