These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 28130191)
1. The norepinephrine system shows information-content specific properties during cognitive control - Evidence from EEG and pupillary responses. Mückschel M; Chmielewski W; Ziemssen T; Beste C Neuroimage; 2017 Apr; 149():44-52. PubMed ID: 28130191 [TBL] [Abstract][Full Text] [Related]
2. Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization. Wolff N; Mückschel M; Beste C Brain Struct Funct; 2017 Nov; 222(8):3819-3831. PubMed ID: 28470552 [TBL] [Abstract][Full Text] [Related]
3. How the depth of processing modulates emotional interference - evidence from EEG and pupil diameter data. Schreiter ML; Chmielewski WX; Mückschel M; Ziemssen T; Beste C Cogn Affect Behav Neurosci; 2019 Oct; 19(5):1231-1246. PubMed ID: 31190135 [TBL] [Abstract][Full Text] [Related]
4. The role of phasic norepinephrine modulations during task switching: evidence for specific effects in parietal areas. Wolff N; Mückschel M; Ziemssen T; Beste C Brain Struct Funct; 2018 Mar; 223(2):925-940. PubMed ID: 29026994 [TBL] [Abstract][Full Text] [Related]
5. The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands. Chmielewski WX; Mückschel M; Ziemssen T; Beste C Hum Brain Mapp; 2017 Jan; 38(1):68-81. PubMed ID: 27519546 [TBL] [Abstract][Full Text] [Related]
6. Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry - Implications for the norepinephrine system during inhibitory control. Dippel G; Mückschel M; Ziemssen T; Beste C Neuroimage; 2017 Aug; 157():575-585. PubMed ID: 28647483 [TBL] [Abstract][Full Text] [Related]
7. The norepinephrine system and its relevance for multi-component behavior. Mückschel M; Gohil K; Ziemssen T; Beste C Neuroimage; 2017 Feb; 146():1062-1070. PubMed ID: 27720820 [TBL] [Abstract][Full Text] [Related]
8. On the interrelation of 1/ Pertermann M; Mückschel M; Adelhöfer N; Ziemssen T; Beste C J Neurophysiol; 2019 May; 121(5):1633-1643. PubMed ID: 30811254 [TBL] [Abstract][Full Text] [Related]
9. Properties of lower level processing modulate the actions of the norepinephrine system during response inhibition. Mückschel M; Ziemssen T; Beste C Biol Psychol; 2020 Apr; 152():107862. PubMed ID: 32032625 [TBL] [Abstract][Full Text] [Related]
10. A role of the norepinephrine system or effort in the interplay of different facets of inhibitory control. Yu S; Ghin F; Mückschel M; Ziemssen T; Stock AK; Beste C Neuropsychologia; 2022 Feb; 166():108143. PubMed ID: 34998865 [TBL] [Abstract][Full Text] [Related]
11. A possible role of the norepinephrine system during sequential cognitive flexibility - Evidence from EEG and pupil diameter data. Giller F; Mückschel M; Ziemssen T; Beste C Cortex; 2020 Jul; 128():22-34. PubMed ID: 32311545 [TBL] [Abstract][Full Text] [Related]
12. Using temporal EEG signal decomposition to identify specific neurophysiological correlates of distractor-response bindings proposed by the theory of event coding. Opitz A; Beste C; Stock AK Neuroimage; 2020 Apr; 209():116524. PubMed ID: 31926281 [TBL] [Abstract][Full Text] [Related]
13. Noradrenergic Responsiveness Supports Selective Attention across the Adult Lifespan. Dahl MJ; Mather M; Sander MC; Werkle-Bergner M J Neurosci; 2020 May; 40(22):4372-4390. PubMed ID: 32317388 [TBL] [Abstract][Full Text] [Related]
14. Cardiac cycle gated cognitive-emotional control in superior frontal cortices. Adelhöfer N; Schreiter ML; Beste C Neuroimage; 2020 Nov; 222():117275. PubMed ID: 32827636 [TBL] [Abstract][Full Text] [Related]
15. Perceptual conflict during sensorimotor integration processes - a neurophysiological study in response inhibition. Chmielewski WX; Beste C Sci Rep; 2016 May; 6():26289. PubMed ID: 27222225 [TBL] [Abstract][Full Text] [Related]
16. Interacting sources of interference during sensorimotor integration processes. Mückschel M; Stock AK; Dippel G; Chmielewski W; Beste C Neuroimage; 2016 Jan; 125():342-349. PubMed ID: 26596550 [TBL] [Abstract][Full Text] [Related]
17. Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task. Frühholz S; Godde B; Finke M; Herrmann M Neuroimage; 2011 Jan; 54(1):622-34. PubMed ID: 20691791 [TBL] [Abstract][Full Text] [Related]
18. Asymmetry in prefrontal resting-state EEG spectral power underlies individual differences in phasic and sustained cognitive control. Ambrosini E; Vallesi A Neuroimage; 2016 Jan; 124(Pt A):843-857. PubMed ID: 26416650 [TBL] [Abstract][Full Text] [Related]
19. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner. Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841 [TBL] [Abstract][Full Text] [Related]
20. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge. Beaton LE; Azma S; Marinkovic K PLoS One; 2018; 13(1):e0191200. PubMed ID: 29329355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]