BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 28130342)

  • 1. NFAT regulation of cystathionine γ-lyase expression in endothelial cells is impaired in rats exposed to intermittent hypoxia.
    Gonzalez Bosc LV; Osmond JM; Giermakowska WK; Pace CE; Riggs JL; Jackson-Weaver O; Kanagy NL
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H791-H799. PubMed ID: 28130342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated sleep apnea alters hydrogen sulfide regulation of blood flow and pressure.
    Barrera A; Morales-Loredo H; Garcia JM; Fregoso G; Pace CE; Mendiola PJ; Naik JS; Gonzalez Bosc LV; Kanagy NL
    Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H511-H519. PubMed ID: 33275519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermittent hypoxia in rats reduces activation of Ca2+ sparks in mesenteric arteries.
    Jackson-Weaver O; Osmond JM; Naik JS; Gonzalez Bosc LV; Walker BR; Kanagy NL
    Am J Physiol Heart Circ Physiol; 2015 Dec; 309(11):H1915-22. PubMed ID: 26408536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent hypoxia in rats increases myogenic tone through loss of hydrogen sulfide activation of large-conductance Ca(2+)-activated potassium channels.
    Jackson-Weaver O; Paredes DA; Gonzalez Bosc LV; Walker BR; Kanagy NL
    Circ Res; 2011 Jun; 108(12):1439-47. PubMed ID: 21512160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NFATc3 is required for intermittent hypoxia-induced hypertension.
    de Frutos S; Duling L; Alò D; Berry T; Jackson-Weaver O; Walker M; Kanagy N; González Bosc L
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2382-90. PubMed ID: 18359899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen sulfide regulation of renal and mesenteric blood flow.
    Morales-Loredo H; Barrera A; Garcia JM; Pace CE; Naik JS; Gonzalez Bosc LV; Kanagy NL
    Am J Physiol Heart Circ Physiol; 2019 Nov; 317(5):H1157-H1165. PubMed ID: 31625777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen sulfide-induced vasodilation mediated by endothelial TRPV4 channels.
    Naik JS; Osmond JM; Walker BR; Kanagy NL
    Am J Physiol Heart Circ Physiol; 2016 Dec; 311(6):H1437-H1444. PubMed ID: 27765747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca²⁺-activated K⁺ channels and smooth muscle Ca²⁺ sparks.
    Jackson-Weaver O; Osmond JM; Riddle MA; Naik JS; Gonzalez Bosc LV; Walker BR; Kanagy NL
    Am J Physiol Heart Circ Physiol; 2013 Jun; 304(11):H1446-54. PubMed ID: 23525712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MPST but not CSE is the primary regulator of hydrogen sulfide production and function in the coronary artery.
    Kuo MM; Kim DH; Jandu S; Bergman Y; Tan S; Wang H; Pandey DR; Abraham TP; Shoukas AA; Berkowitz DE; Santhanam L
    Am J Physiol Heart Circ Physiol; 2016 Jan; 310(1):H71-9. PubMed ID: 26519030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats.
    Cheng Y; Ndisang JF; Tang G; Cao K; Wang R
    Am J Physiol Heart Circ Physiol; 2004 Nov; 287(5):H2316-23. PubMed ID: 15191893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Hydrogen Sulfide in Endothelium-Derived Relaxing Factor-Mediated Responses in Rat Cerebral Arteries.
    Wang M; Hu Y; Fan Y; Guo Y; Chen F; Chen S; Li Q; Chen Z
    J Vasc Res; 2016; 53(3-4):172-185. PubMed ID: 27732975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of hydrogen sulfide (H
    Wu Y; Guo YY; Zhang YY; Zhang Y
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2018 Jan; 34(1):29-34. PubMed ID: 29926655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NFATc3 contributes to intermittent hypoxia-induced arterial remodeling in mice.
    de Frutos S; Caldwell E; Nitta CH; Kanagy NL; Wang J; Wang W; Walker MK; Gonzalez Bosc LV
    Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H356-63. PubMed ID: 20495147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasorelaxation elicited by endogenous and exogenous hydrogen sulfide in mouse mesenteric arteries.
    Hart JL
    Naunyn Schmiedebergs Arch Pharmacol; 2020 Apr; 393(4):551-564. PubMed ID: 31713651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystathionine γ-lyase, a H2S-generating enzyme, is a GPBAR1-regulated gene and contributes to vasodilation caused by secondary bile acids.
    Renga B; Bucci M; Cipriani S; Carino A; Monti MC; Zampella A; Gargiulo A; d'Emmanuele di Villa Bianca R; Distrutti E; Fiorucci S
    Am J Physiol Heart Circ Physiol; 2015 Jul; 309(1):H114-26. PubMed ID: 25934094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystathionine γ-Lyase Modulates Flow-Dependent Vascular Remodeling.
    Yuan S; Yurdagul A; Peretik JM; Alfaidi M; Al Yafeai Z; Pardue S; Kevil CG; Orr AW
    Arterioscler Thromb Vasc Biol; 2018 Sep; 38(9):2126-2136. PubMed ID: 30002061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage.
    Wang XH; Wang F; You SJ; Cao YJ; Cao LD; Han Q; Liu CF; Hu LF
    Cell Signal; 2013 Nov; 25(11):2255-62. PubMed ID: 23872072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium sensing receptor regulating smooth muscle cells proliferation through initiating cystathionine-gamma-lyase/hydrogen sulfide pathway in diabetic rat.
    Zhong X; Wang Y; Wu J; Sun A; Yang F; Zheng D; Li T; Dong S; Zhao Y; Yang G; Xu C; Sun D; Lu F; Zhang W
    Cell Physiol Biochem; 2015; 35(4):1582-98. PubMed ID: 25824457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical role for cystathionine-β-synthase in hydrogen sulfide-mediated hypoxic relaxation of the coronary artery.
    Donovan J; Wong PS; Roberts RE; Garle MJ; Alexander SPH; Dunn WR; Ralevic V
    Vascul Pharmacol; 2017 Aug; 93-95():20-32. PubMed ID: 28552745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD4
    Cui C; Fan J; Zeng Q; Cai J; Chen Y; Chen Z; Wang W; Li SY; Cui Q; Yang J; Tang C; Xu G; Cai J; Geng B
    Circulation; 2020 Nov; 142(18):1752-1769. PubMed ID: 32900241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.