These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
554 related articles for article (PubMed ID: 28130394)
1. Application of microfluidic technologies to human assisted reproduction. Smith GD; Takayama S Mol Hum Reprod; 2017 Apr; 23(4):257-268. PubMed ID: 28130394 [TBL] [Abstract][Full Text] [Related]
2. Advances of microfluidic technology in reproductive biology. Nikshad A; Aghlmandi A; Safaralizadeh R; Aghebati-Maleki L; Warkiani ME; Khiavi FM; Yousefi M Life Sci; 2021 Jan; 265():118767. PubMed ID: 33212151 [TBL] [Abstract][Full Text] [Related]
3. Integration of microfluidics in animal in vitro embryo production. Wheeler MB; Rubessa M Mol Hum Reprod; 2017 Apr; 23(4):248-256. PubMed ID: 27418669 [TBL] [Abstract][Full Text] [Related]
4. [Coats of preimplantation mammalian embryos as a target of reproductive technologies]. Rozhkova IN; Brusentsev EIu; Amstislavskiĭ SIa Ontogenez; 2012; 43(5):309-19. PubMed ID: 23101404 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. Yanez LZ; Camarillo DB Mol Hum Reprod; 2017 Apr; 23(4):235-247. PubMed ID: 27932552 [TBL] [Abstract][Full Text] [Related]
6. Microfluidics for mammalian embryo culture and selection: where do we stand now? Le Gac S; Nordhoff V Mol Hum Reprod; 2017 Apr; 23(4):213-226. PubMed ID: 27678484 [TBL] [Abstract][Full Text] [Related]
7. Microfluidics for gametes, embryos, and embryonic stem cells. Smith GD; Swain JE; Bormann CL Semin Reprod Med; 2011 Jan; 29(1):5-14. PubMed ID: 21207330 [TBL] [Abstract][Full Text] [Related]
8. Exposure to follicular fluid during oocyte maturation and oviductal fluid during post-maturation does not improve in vitro embryo production in the horse. Douet C; Parodi O; Martino NA; Lacalandra GM; Nicassio M; Reigner F; Deleuze S; Dell'Aquila ME; Goudet G Zygote; 2017 Oct; 25(5):612-630. PubMed ID: 28929977 [TBL] [Abstract][Full Text] [Related]
9. A Review on Microfluidics: An Aid to Assisted Reproductive Technology. Alias AB; Huang HY; Yao DJ Molecules; 2021 Jul; 26(14):. PubMed ID: 34299629 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes. Guo Y; Yang Y; Yi X; Zhou X Cryobiology; 2019 Oct; 90():63-70. PubMed ID: 31449779 [TBL] [Abstract][Full Text] [Related]
11. Full in vitro fertilization laboratory mechanization: toward robotic assisted reproduction? Meseguer M; Kruhne U; Laursen S Fertil Steril; 2012 Jun; 97(6):1277-86. PubMed ID: 22480821 [TBL] [Abstract][Full Text] [Related]
12. The negative influence of sperm cryopreservation on the quality and development of the embryo depends on the morphology of the oocyte. Braga DP; Setti AS; Figueira RC; Iaconelli A; Borges E Andrology; 2015 Jul; 3(4):723-8. PubMed ID: 26122368 [TBL] [Abstract][Full Text] [Related]
13. Comparison of pre- and post-implantation development following the application of three artificial activating stimuli in a mouse model with round-headed sperm cells deficient for oocyte activation. Vanden Meerschaut F; Nikiforaki D; De Roo C; Lierman S; Qian C; Schmitt-John T; De Sutter P; Heindryckx B Hum Reprod; 2013 May; 28(5):1190-8. PubMed ID: 23482335 [TBL] [Abstract][Full Text] [Related]
14. Microfluidics for sperm research. Knowlton SM; Sadasivam M; Tasoglu S Trends Biotechnol; 2015 Apr; 33(4):221-9. PubMed ID: 25798781 [TBL] [Abstract][Full Text] [Related]
15. Effects of oocyte activation and sperm preparation on the development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection. Tian JH; Wu ZH; Liu L; Cai Y; Zeng SM; Zhu SE; Liu GS; Li Y; Wu CX Theriogenology; 2006 Jul; 66(2):439-48. PubMed ID: 16426671 [TBL] [Abstract][Full Text] [Related]
16. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Ma R; Xie L; Han C; Su K; Qiu T; Wang L; Huang G; Xing W; Qiao J; Wang J; Cheng J Anal Chem; 2011 Apr; 83(8):2964-70. PubMed ID: 21438638 [TBL] [Abstract][Full Text] [Related]
17. Oocyte morphology and embryo morphokinetics in an intra-cytoplasmic sperm injection programme. Is there a relationship? Faramarzi A; Khalili MA; Ashourzadeh S Zygote; 2017 Apr; 25(2):190-196. PubMed ID: 28264747 [TBL] [Abstract][Full Text] [Related]
18. High FSH decreases the developmental potential of mouse oocytes and resulting fertilized embryos, but does not influence offspring physiology and behavior in vitro or in vivo. Li M; Zhao Y; Zhao CH; Yan J; Yan YL; Rong L; Liu P; Feng HL; Yu Y; Qiao J Hum Reprod; 2013 May; 28(5):1309-23. PubMed ID: 23411618 [TBL] [Abstract][Full Text] [Related]
19. Rethinking gamete/embryo isolation and culture with microfluidics. Suh RS; Phadke N; Ohl DA; Takayama S; Smith GD Hum Reprod Update; 2003; 9(5):451-61. PubMed ID: 14640377 [TBL] [Abstract][Full Text] [Related]