BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 28130394)

  • 1. Application of microfluidic technologies to human assisted reproduction.
    Smith GD; Takayama S
    Mol Hum Reprod; 2017 Apr; 23(4):257-268. PubMed ID: 28130394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances of microfluidic technology in reproductive biology.
    Nikshad A; Aghlmandi A; Safaralizadeh R; Aghebati-Maleki L; Warkiani ME; Khiavi FM; Yousefi M
    Life Sci; 2021 Jan; 265():118767. PubMed ID: 33212151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of microfluidics in animal in vitro embryo production.
    Wheeler MB; Rubessa M
    Mol Hum Reprod; 2017 Apr; 23(4):248-256. PubMed ID: 27418669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Coats of preimplantation mammalian embryos as a target of reproductive technologies].
    Rozhkova IN; Brusentsev EIu; Amstislavskiĭ SIa
    Ontogenez; 2012; 43(5):309-19. PubMed ID: 23101404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies.
    Yanez LZ; Camarillo DB
    Mol Hum Reprod; 2017 Apr; 23(4):235-247. PubMed ID: 27932552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics for mammalian embryo culture and selection: where do we stand now?
    Le Gac S; Nordhoff V
    Mol Hum Reprod; 2017 Apr; 23(4):213-226. PubMed ID: 27678484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics for gametes, embryos, and embryonic stem cells.
    Smith GD; Swain JE; Bormann CL
    Semin Reprod Med; 2011 Jan; 29(1):5-14. PubMed ID: 21207330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure to follicular fluid during oocyte maturation and oviductal fluid during post-maturation does not improve in vitro embryo production in the horse.
    Douet C; Parodi O; Martino NA; Lacalandra GM; Nicassio M; Reigner F; Deleuze S; Dell'Aquila ME; Goudet G
    Zygote; 2017 Oct; 25(5):612-630. PubMed ID: 28929977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review on Microfluidics: An Aid to Assisted Reproductive Technology.
    Alias AB; Huang HY; Yao DJ
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes.
    Guo Y; Yang Y; Yi X; Zhou X
    Cryobiology; 2019 Oct; 90():63-70. PubMed ID: 31449779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full in vitro fertilization laboratory mechanization: toward robotic assisted reproduction?
    Meseguer M; Kruhne U; Laursen S
    Fertil Steril; 2012 Jun; 97(6):1277-86. PubMed ID: 22480821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The negative influence of sperm cryopreservation on the quality and development of the embryo depends on the morphology of the oocyte.
    Braga DP; Setti AS; Figueira RC; Iaconelli A; Borges E
    Andrology; 2015 Jul; 3(4):723-8. PubMed ID: 26122368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of pre- and post-implantation development following the application of three artificial activating stimuli in a mouse model with round-headed sperm cells deficient for oocyte activation.
    Vanden Meerschaut F; Nikiforaki D; De Roo C; Lierman S; Qian C; Schmitt-John T; De Sutter P; Heindryckx B
    Hum Reprod; 2013 May; 28(5):1190-8. PubMed ID: 23482335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics for sperm research.
    Knowlton SM; Sadasivam M; Tasoglu S
    Trends Biotechnol; 2015 Apr; 33(4):221-9. PubMed ID: 25798781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of oocyte activation and sperm preparation on the development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection.
    Tian JH; Wu ZH; Liu L; Cai Y; Zeng SM; Zhu SE; Liu GS; Li Y; Wu CX
    Theriogenology; 2006 Jul; 66(2):439-48. PubMed ID: 16426671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development.
    Ma R; Xie L; Han C; Su K; Qiu T; Wang L; Huang G; Xing W; Qiao J; Wang J; Cheng J
    Anal Chem; 2011 Apr; 83(8):2964-70. PubMed ID: 21438638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oocyte morphology and embryo morphokinetics in an intra-cytoplasmic sperm injection programme. Is there a relationship?
    Faramarzi A; Khalili MA; Ashourzadeh S
    Zygote; 2017 Apr; 25(2):190-196. PubMed ID: 28264747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High FSH decreases the developmental potential of mouse oocytes and resulting fertilized embryos, but does not influence offspring physiology and behavior in vitro or in vivo.
    Li M; Zhao Y; Zhao CH; Yan J; Yan YL; Rong L; Liu P; Feng HL; Yu Y; Qiao J
    Hum Reprod; 2013 May; 28(5):1309-23. PubMed ID: 23411618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rethinking gamete/embryo isolation and culture with microfluidics.
    Suh RS; Phadke N; Ohl DA; Takayama S; Smith GD
    Hum Reprod Update; 2003; 9(5):451-61. PubMed ID: 14640377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamete activation: basic knowledge and clinical applications.
    Tosti E; Ménézo Y
    Hum Reprod Update; 2016 Jun; 22(4):420-39. PubMed ID: 27278231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.